{ log2|x| (x2) + log2 (x2) ≤ 8.
{x2>0 ⇒ x ≠ 0
{|x| ≠ 1 ⇒ x ≠ ± 1
log|x|x2=log|x|(|x|)2=2log|x|(|x|)=2
log2|x|x2=22=4
{4·(2x)2–17·2x+4 ≤ 0 ⇒ D=225; (1/4) ≤ 2x ≤ 4
{4+log2x2 ≤ 8 ⇒ (log2x–2)·(log2x+2) ≤ 0 ⇒ –2 ≤ log2x ≤ 2
{2–2 ≤ 2x ≤ 22 ⇒ (–2) ≤ x ≤ 2
{log2(1/4) ≤ log2x ≤ log24 ⇒ (1/4) ≤ x ≤ 4
(1/4) ≤ х ≤ 2
C учетом ОДЗ
О т в е т. [1/4;1) U (1; 2]