(x2 + 2x + 1)(x2 + 2x – 3) ≤ 5
5x+1 + 3 · 5–x ≤ 16
Замена переменной
x2+2x–3=t
x2+2x+1=t+4
t·(t+4) ≤ 5
t2+4t–5 ≤ 0
D=16+20=36
t1=–5; t2=1
___ [–5] __–___ [1] ____
–5 ≤ t ≤ 1
–5 ≤ x2+2x–3 ≤ 1
{x2+2x–3 ≤ 1
{x2+2x–3 ≥ –5
{x2+2x–4≤ 0 ⇒ D=20 ⇒ –1 – √5 ≤ x ≤ –1 + √5
{x2+2x+2 ≥ 0 ⇒ D=4–4·2<0 неравенство верно при любом х
О т в е т. [ –1 – √5 ;–1 + √5]
2.
5x+1=5x·5
Замена переменной
5x=t
t >0
5–x=1/t
5t +(3/t) ≤ 16
Умножаем на t ≥ 0
5t2–16t+3 ≤ 0
D=(–16)2–4·5·3=256–60=196
t1=(16–14)/10=1/5; t2=(16+14)/10=3
Решение неравенства:
(1/5) ≤ 5x ≤ 3
5–1 ≤ 5x ≤ log53
О т в е т. [1/5; log53]