9.13. ∫ (4x + 8) / (4x2 + 6x – 13) dx
2x+1=t
d(2x+1)=dt
2dx=dt
dx=(1/2)dt
4x+2=2t
4x+8=2t+6
[m]=\frac{1}{2} \int \frac{2t+6}{t^2-\frac {61}{4}}dt=\frac{1}{2}ln|t^2-\frac{61}{4}|+3\cdot \frac{1}{2\sqrt{\frac{61}{4}}}ln|\frac{t-\sqrt{\frac{61}{4}}}{t+\sqrt{\frac{61}{4}}}|+C=[/m]
[m]=\frac{1}{2}ln|4x^2+6x-13|+3\cdot \frac{1}{2\cdot \frac{\sqrt{61}}{2}}\cdot ln|\frac{t-\frac{\sqrt{61}}{2}}{t+\frac{\sqrt{61}}{2}}|+C=[/m]
[m]=\frac{1}{2}ln|4x^2+6x-13|+\frac{3}{\sqrt{61}}\cdot ln|\frac{2t-\sqrt{61}}{2t+\sqrt{61}}|+C=[/m]
[m]=\frac{1}{2}ln|4x^2+6x-13|+\frac{3}{\sqrt{61}}ln|\frac{4x+2-\sqrt{61}}{4x+2+\sqrt{61}}|+C[/m]