✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 498 В турнире участвовали 55 теннисистов.

УСЛОВИЕ:

В турнире участвовали 55 теннисистов. Все игры проходили на одном корте. Спортсмен, проигравший хотя бы одну игру, выбывает из турнира. Оказалось, что у участников каждой встречи количество предыдущих побед отличалось не более чем на одну. Какое наибольшее число игр мог сыграть победитель турнира?

РЕШЕНИЕ:

f(k) - максимальное количество игр, которые сыграл победитель турнира с k участниками.
Тогда f(2)=1,f(3)=2,f(4)=2 - победитель не может выиграть последовательно у остальных троих, т.к. нарушается условие задачи (количество предыдущих побед отличалось не более чем на одну).
f(5)=3. Аналогично f(5)<4, а f(5)=3, когда теннисисты разбиваются на две группы по 2 и 3 человека.

Пусть k=6,7?f(k)=3, т.к. Победитель и Финалист выиграли в своих группах, поэтому если f(k)=4, значит Финалист провел минимум 2 игры ? в его группе минимум 3 человека, значит в группе Победителя максимум 4 человека, но тогда до Финала тот провел 2 игры, противоречие.
f(8)=4, т.к. тогда можно разбить на две группы по 5 и 3 человека, при этом f(5)=3,f(3)=2,|3?2|?1.

Аналогично, если k=9,10,11,12, то f(k)=4. Если f(k)=5, то Финалист провел в своей группе минимум 3 игры ? в этой группе минимум 5 человек ? в группе Победителя максимум 7 человек, что противоречит тому, что он провел 4 игры в своей группе.
f(13)=5, разбиваем на две группы по 8 и 5 человек.
Аналогичными рассуждениями получаем, что f(k)=5 при k=13,...,20.
f(21)=6,f(k)=6 при k=22,...,33
f(34)=7,f(k)=7 при k=35,...,54
f(55)=8,f(k)=8 при k=56,...,88

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

8

Добавил slava191, просмотры: ☺ 1080 ⌚ 17.01.2014. математика 10-11 класс

Решения пользователей

Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
Δ АВС- равнобедренный.
Проведем высоту и медиану СК.

Из Δ АКС:
sin ∠ BAC=CK/AC ⇒ СК=18
По теореме Пифагора:
АК^2=AC^2-CK^2=27^2-18^2
АК=9sqrt(5)

AB=2AK=18sqrt(5)

S_( Δ ABC)=AB*CK/2 и S_( Δ ABC)=BC*AH/2 ⇒

AB*CK=BC*AH ⇒ АН=AB*CK/BC=18sqrt(5)*18/27=12sqrt(5)

Из Δ АBH по теореме Пифагора:
ВН^2=АВ^2-АН^2=(18sqrt(5))^2-(12sqrt(5))^2=5*(18-12)*(18+12)=30^2

[b]ВН=30[/b]

ВН> BC ⇒ ∠ C - [i]тупой[/i] См. рис
(прикреплено изображение)
✎ к задаче 52815
0,1 М = 0,1 моль/л
Если в литре( 1000мл) 0,1 моль соли, значит в 100 мл в 10 раз меньше - 0,01 моль
Рассчитаем массу 0,01 моль нитрита натрия
m = n*M = 0.01 * 85 = 0.85 г
Таким образом, чтобы получить 100 мл 0,1 М раствора нитрита натрия, нужно взять 0,85 г соли и растворить ее в 100 мл воды
✎ к задаче 52808
По частям два раза

u=x^2+4x+3 ⇒ du=2x+4
dv=e^(2x)dx ⇒ v=(1/2)e^(2x)

∫ (x^2+4x+3)e^(2x) dx=(1/2)e^(2x) *(x^2+4x+3)- ∫ (1/2)e^(2x)*(2x+4)dx=

[b]=(1/2)e^(2x) *(x^2+4x+3)- ∫ e^(2x)*(x+2)dx=[/b]


u=x+2 ⇒ du=dx
dv=e^(2x)dx ⇒ v=(1/2)e^(2x)

[b]=(1/2)e^(2x) *(x^2+4x+3)- ((1/2)e^(2x) *(x+2)-∫ e^(2x)dx=[/b]


[b]=(1/2)e^(2x) *(x^2+4x+3- (1/2)x-1)+(1/2)* e^(2x)+C=[/b]

[b]=(1/2)e^(2x) *(x^2+(7/2)x+3)+C[/b]
✎ к задаче 52811
ОДЗ: x >0

log_{0,5}0,5^{1+lgx}\cdot (\frac{5^{1+lgx}}{0,5^{1+lgx}}-1)\leq lgx-1

log_{0,5}0,5^{1+lgx}+log_{0,5}((\frac{5}{0,5})^{1+lgx}-1)\leq lgx-1

1+lgx+log_{0,5}(10^{1+lgx}-1)\leq lgx-1

log_{0,5}(10x-1)\leq -2

log_{0,5}(10x-1)\leq log_{0,5}4

Логарифмическая функция убывает, поэтому

10х-1 ≥ 4

10х ≥ 5

x ≥ 0,5

Удовл ОДЗ

О т в е т. [0,5;+ ∞ )

✎ к задаче 52812
sin(πx+πy)=0 ⇒ πx+πy=πk, k ∈ Z ⇒ x+y=k, k ∈ Z


Решаем систему способом подстановки: y=k-x

x^2+(k-x)^2=a ⇒ 2x^2-2kx+k^2-a=0

D=(-2k)^2-4*2*(k^2-a)=4k^2-8k^2+8a=8a-4k^2

D>0 квадратное уравнение имеет два корня:

2a-k^2>0 ⇒ [b]a>k^2/2[/b]


k= ± 1 ⇒ [red]a>1/2[/red]

{x+y=1
{x^2+y^2=a

или

{x+y=-1
{x^2+y^2=a

получим [red]4 решения
[/red]


Графическая интерпретация:
Прямые x+y= ± k (k ≠ 0) не должны являться касательными к окружности x^2+y^2=a

т.е. [b]a ≠ k^2/2; k - целое; k ≠ 0[/b]
(прикреплено изображение)
✎ к задаче 52813