✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 496 В основании четырехугольной пирамиды

УСЛОВИЕ:

В основании четырехугольной пирамиды SABCD лежит квадрат ABCD со стороной AB=12. На продолжении диагонали CA за точку A выбрана точка H так, что AH=3CA. Отрезок SH=6 перпендикулярен плоскости основания пирамиды. Какой наибольший объем V может иметь цилиндр, расположенный внутри пирамиды так, что одно из его оснований лежит на основании пирамиды? В ответе укажите величину V/Pi.

Добавил slava191, просмотры: ☺ 3347 ⌚ 17.01.2014. математика 10-11 класс

Решения пользователей

На нашем сайте такое бывает редко, но решение к данной задаче еще никто не написал.

Что Вы можете сделать?

  1. Напишите решение или хотя бы свои догадки первым.
  2. Заказать эту задачу у партнеров сайта: на этой странице.
  3. Найдите похожую задачу. Используйте поиск.
Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
(прикреплено изображение)
✎ к задаче 53012
(прикреплено изображение)
✎ к задаче 52997
(прикреплено изображение)
✎ к задаче 52999
Квадрат диагонали куба равен сумме квадратов трех его измерений:
d^(2)=6^(2)+6^(2)+6^(2)=36+36+36=36*3,
d=sqrt(36*3)=6sqrt(3).
Ответ: в)
✎ к задаче 53004
(прикреплено изображение)
✎ к задаче 52996