✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 495 Кузнечик прыгает по вершинам правильного

УСЛОВИЕ:

Кузнечик прыгает по вершинам правильного треугольника ABC, прыгая каждый раз в одну из соседних вершин. Сколькими способами он может попасть из вершины A обратно в вершину A за 11 прыжков?

РЕШЕНИЕ:

Обозначим через an, bn, cn число способов переместиться за n прыжков в точку A, B, C соответственно, начиная из точки A. Из соображений симметрии, bn=cn, так как в любом маршруте можно поменять роли B и C.

Очевидно, что an+1=bn+cn=2bn, так как в точку A можно прийти или из B, или из C. Аналогично, bn+1=an+cn=an+bn из тех же соображений. Непосредственно ясно, что b0=0, b1=1, и при этом имеет место рекуррентное соотношение bn+2=an+1+bn+1=bn+1+2bn. Для нахождения формулы общего члена здесь имеются стандартные способы, но их можно избежать следующим образом. Попытаемся найти несколько первых членов последовательности bn (n?0), и угадать общую закономерность, которую далее станет можно доказать методом математической индукции.

Последовательность получается такая: 0,1,1,3,5,11,21,…. Здесь каждый следующий член примерно в два раза больше предыдущего, поэтому имеет смысл сравнить нашу последовательность с последовательностью степеней двойки: 1,2,4,8,16,32,64,…. Видно, что у второй последовательности каждый член примерно втрое больше. Поэтому рассмотрим утроенную последовательность 3bn, члены которой равны 0,3,3,9,15,33,63,…. Сравнивая с последовательностью степеней двойки, мы видим, что она получается из 3bn прибавлением последовательности 1,?1,1,?1,…, для которой формула общего члена равна (?1)n (напомним, что последовательности у нас нумеруются с нулевого члена). Таким образом, для нескольких первых членов последовательности верна формула 3bn=2^n?(?1)^n, то есть bn=(2^n?(?1)^n)/3. Остаётся подставить эти значения в рекуррентную формулу и убедиться в справедливости этого равенства для всех n?0, применяя метод математической индукции.

С учётом того, что an=2bn?1 при n?1, имеем окончательный ответ
an=(2^n+2?(?1)^n)/3.
При n=0 формула также даёт верное значение a0=1.
В нашем случае n=11

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

682

Добавил slava191, просмотры: ☺ 3108 ⌚ 17.01.2014. математика 10-11 класс

Решения пользователей

РЕШЕНИЕ ОТ slava191

Подобная задача!

Кузнечик
Кузнечик прыгает по вершинам правильного треугольника ABC, прыгая каждый раз в одну из соседних вершин. Сколькими способами он может попасть из вершины A обратно в вершину A за 12 прыжков?

Решение:
Пусть кузнечик может совершить 1 прыжок, тогда число способов вернуться в вершину A равно 0, число способов попасть на вершину B равно 1.
Пусть всего 2 прыжка. Тогда число способов попасть обратно равно 2, а число способов попасть на вершину B равно 1.
Пусть A(k) - число способов вернуться в вершину A за k прыжков, B(k) - число способов попасть на вершину B за k прыжков. Тогда получаем, что A(k+1)=B(k)+C(k)=2B(k).
Также B(k+1)=A(k)+C(k)=A(k)+B(k)
(C(k) аналогичный показатель для вершины C, очевидно, что C(k)=B(k))
Итак, имеем два рекуррентных соотношения: A(k+1)=2B(k),B(k+1)=A(k)+B(k)
A(1)=0,B(1)=1,A(2)=2,B(2)=1,A(3)=2,B(3)=3 и т.д. Получаем A(12)=1366.

Ответ: 1366.

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
y'=11/cos^2(x)-11
y'=(11-11cos^2(x))cos^2(x)=11(1-cos^2(x)/cos^2(x)=11sin^2(x)/cos^2(x)=11tg^2(x)>0
y'>0. Следовательно функция y(x) возрастает на отрезке [-pi/4;pi/4].
Значит, ее наименьшее значение равно y(-pi/4)= 11*tg(-pi/4)-11*(-pi/4)-11*pi/4+12=11*(-1)+11pi/4-11pi/4+12=-11+12=1
Ответ: 1
✎ к задаче 52965
Так как x>0; y>0

log_{y^4+x^2+1}(2xy^2+1)=\frac{1}{log_{2xy^2+1}(y^4+x^2+1)}

log_{2x^2y+1}(x^4+y^2+1)\cdot log_{2xy^2+1}(y^4+x^2+1)=1

Если поменять местами x и y, то уравнение [b]не изменится.[/b]

log_{2y^2x+1}(y^4+x^2+1)\cdot log_{2yx^2+1}(x^4+y^2+1)=1

Значит [b] y = x[/b] является решением уравнения и уравнение примет вид:

log^2_{2x^2y+1}(x^4+y^2+1)=1

log^2_{2y^2y+1}(y^4+y^2+1)=1 ⇒


log_{2y^2y+1}(y^4+y^2+1)=1 или log_{2y^2y+1}(y^4+y^2+1)=-1


2y^3+1=y^4+y^2+1 или (2y^3+1)(y^4+y^2+1)=1

y^2(y-1)^2=0 или (2y^3+1)(y^4+y^2+1)=1

y=1 или y^2(y+1)(2y^2+y+1)=0;


а значит x=y=1 или y=-1 не удовлетворяет условию задачи

О т в е т [b](1;1)[/b]



✎ к задаче 52956
(прикреплено изображение)
✎ к задаче 52955
Проводим перпендикуляр из точки А на прямую ВС_(1) как высоту [i]равнобедренного [/i]треугольника АВС_(1), проведенную на боковую сторону.
Δ АВС_(1) - равнобедренный, так как

АС_(1)=ВС_(1)=sqrt(2) - диагонали боковых граней, которые являются [blue]квадратами.[/blue]

Найдем высоту [b]h[/b] равнобедренного треугольника АВС_(1)

h^2=AC^2_(1)-(AB/2)^2=(sqrt(2))^2-(1/2)^2=2-(1/4)=7/4
h =sqrt(7)/2

S_( Δ АВС_(1))=(1/2) * AB*h

C другой стороны

S_( Δ АВС_(1))=(1/2) * BС_(1)*AD


Приравниваем правые части:
(1/2) * AB*h=(1/2) * BС_(1)*AD ⇒ AD=AB*h/BC_(1)=(sqrt(7)/2)/sqrt(2)=sqrt(7)/(2sqrt(2))=sqrt(7)*sqrt(2)/(2*2)=[b]sqrt(14)/4[/b]

(прикреплено изображение)
✎ к задаче 52931
Проводим АК ⊥ BC

Призма прямая, значит боковые ребра перпендикулярны плоскости АВС, а значит и любой прямой в этой плоскости
Поэтому BB_(1) ⊥ AK

⇒ АК ⊥ ВС и АК ⊥ ВВ_(1)

АК перпендикулярна двум пересекающимся прямым плоскости, значит АК ⊥ пл ВВ_(1)С_(1)С

АК^2=AB^2-BK^2=1-(1/2)^2=3/4

AK=sqrt(3)/2

О т в е т.[b] sqrt(3)/2[/b]
(прикреплено изображение)
✎ к задаче 52964