✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 495 Кузнечик прыгает по вершинам правильного

УСЛОВИЕ:

Кузнечик прыгает по вершинам правильного треугольника ABC, прыгая каждый раз в одну из соседних вершин. Сколькими способами он может попасть из вершины A обратно в вершину A за 11 прыжков?

РЕШЕНИЕ:

Обозначим через an, bn, cn число способов переместиться за n прыжков в точку A, B, C соответственно, начиная из точки A. Из соображений симметрии, bn=cn, так как в любом маршруте можно поменять роли B и C.

Очевидно, что an+1=bn+cn=2bn, так как в точку A можно прийти или из B, или из C. Аналогично, bn+1=an+cn=an+bn из тех же соображений. Непосредственно ясно, что b0=0, b1=1, и при этом имеет место рекуррентное соотношение bn+2=an+1+bn+1=bn+1+2bn. Для нахождения формулы общего члена здесь имеются стандартные способы, но их можно избежать следующим образом. Попытаемся найти несколько первых членов последовательности bn (n?0), и угадать общую закономерность, которую далее станет можно доказать методом математической индукции.

Последовательность получается такая: 0,1,1,3,5,11,21,…. Здесь каждый следующий член примерно в два раза больше предыдущего, поэтому имеет смысл сравнить нашу последовательность с последовательностью степеней двойки: 1,2,4,8,16,32,64,…. Видно, что у второй последовательности каждый член примерно втрое больше. Поэтому рассмотрим утроенную последовательность 3bn, члены которой равны 0,3,3,9,15,33,63,…. Сравнивая с последовательностью степеней двойки, мы видим, что она получается из 3bn прибавлением последовательности 1,?1,1,?1,…, для которой формула общего члена равна (?1)n (напомним, что последовательности у нас нумеруются с нулевого члена). Таким образом, для нескольких первых членов последовательности верна формула 3bn=2^n?(?1)^n, то есть bn=(2^n?(?1)^n)/3. Остаётся подставить эти значения в рекуррентную формулу и убедиться в справедливости этого равенства для всех n?0, применяя метод математической индукции.

С учётом того, что an=2bn?1 при n?1, имеем окончательный ответ
an=(2^n+2?(?1)^n)/3.
При n=0 формула также даёт верное значение a0=1.
В нашем случае n=11

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

682

Добавил slava191, просмотры: ☺ 2777 ⌚ 17.01.2014. математика 10-11 класс

Решения пользователей

РЕШЕНИЕ ОТ slava191

Подобная задача!

Кузнечик
Кузнечик прыгает по вершинам правильного треугольника ABC, прыгая каждый раз в одну из соседних вершин. Сколькими способами он может попасть из вершины A обратно в вершину A за 12 прыжков?

Решение:
Пусть кузнечик может совершить 1 прыжок, тогда число способов вернуться в вершину A равно 0, число способов попасть на вершину B равно 1.
Пусть всего 2 прыжка. Тогда число способов попасть обратно равно 2, а число способов попасть на вершину B равно 1.
Пусть A(k) - число способов вернуться в вершину A за k прыжков, B(k) - число способов попасть на вершину B за k прыжков. Тогда получаем, что A(k+1)=B(k)+C(k)=2B(k).
Также B(k+1)=A(k)+C(k)=A(k)+B(k)
(C(k) аналогичный показатель для вершины C, очевидно, что C(k)=B(k))
Итак, имеем два рекуррентных соотношения: A(k+1)=2B(k),B(k+1)=A(k)+B(k)
A(1)=0,B(1)=1,A(2)=2,B(2)=1,A(3)=2,B(3)=3 и т.д. Получаем A(12)=1366.

Ответ: 1366.

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
ρ ≥ 0 ⇒ 4-3cos φ ≥ 0 ⇒ cos φ ≤ 4/3 ⇒ верно при любом φ


Берем разные значения углов и находим ρ

Например

φ =0

ρ =7/(4-3)=7

Проводим луч φ =0 и откладываем точку 7


φ =π/3

cosπ/3=1/2

ρ =7/(4-3*0,5)=7/2,5

Проводим луч φ =π/3 и откладываем точку 7/2,5

(прикреплено изображение)
✎ к задаче 43638
ctg α =1/tg α


3*tg α -(3/tg α) =8

3tg^2 α -8tg α -3=0

D=64-4*3*(-3)=100

tg α =3 или tg α =-1/3

Так как по условию

-π/2 < α <0 tg α =3 не удовл этому условию


sin2 α =2tg α /(1+tg^2 α )=2*(-1/3)/(1+(1/9))=[b]-0,6[/b]
✎ к задаче 43612
S_(поверхности шара)=4πR^2 ⇒ R^2[b]=S/4π[/b]


r^2=R^2-d^2=(37/(4π^2))-(1/(2π_)^2=36/(4π^2)=9/(π^2)

r=3/π

C=2π*r=6
✎ к задаче 43614
Характеристическое
λ ^2+6 λ +9=0

Корень кратный действительный

λ _(1,2)=-3


а)f(x)=(x-2)e^(3x)

у_(частное)=(ax+b)*e^(3x)

б)
y_(частное)=Аcosx+Bsinx

✎ к задаче 43629
Пропорция:

(3x+4)*(4x+3)=(x-6)*(x-2)

x-6 ≠ 0
4x+3 ≠ 0

12x^2+16x+9x+12=x^2-6x-2x+12

11x^2+33x=0

11*х*(х+3)=0

x=0 или x+3=0 ⇒ x=-3

✎ к задаче 43637