ЗАДАЧА 495 Кузнечик прыгает по вершинам правильного

УСЛОВИЕ:

Кузнечик прыгает по вершинам правильного треугольника ABC, прыгая каждый раз в одну из соседних вершин. Сколькими способами он может попасть из вершины A обратно в вершину A за 11 прыжков?

РЕШЕНИЕ:

Обозначим через an, bn, cn число способов переместиться за n прыжков в точку A, B, C соответственно, начиная из точки A. Из соображений симметрии, bn=cn, так как в любом маршруте можно поменять роли B и C.

Очевидно, что an+1=bn+cn=2bn, так как в точку A можно прийти или из B, или из C. Аналогично, bn+1=an+cn=an+bn из тех же соображений. Непосредственно ясно, что b0=0, b1=1, и при этом имеет место рекуррентное соотношение bn+2=an+1+bn+1=bn+1+2bn. Для нахождения формулы общего члена здесь имеются стандартные способы, но их можно избежать следующим образом. Попытаемся найти несколько первых членов последовательности bn (n?0), и угадать общую закономерность, которую далее станет можно доказать методом математической индукции.

Последовательность получается такая: 0,1,1,3,5,11,21,…. Здесь каждый следующий член примерно в два раза больше предыдущего, поэтому имеет смысл сравнить нашу последовательность с последовательностью степеней двойки: 1,2,4,8,16,32,64,…. Видно, что у второй последовательности каждый член примерно втрое больше. Поэтому рассмотрим утроенную последовательность 3bn, члены которой равны 0,3,3,9,15,33,63,…. Сравнивая с последовательностью степеней двойки, мы видим, что она получается из 3bn прибавлением последовательности 1,?1,1,?1,…, для которой формула общего члена равна (?1)n (напомним, что последовательности у нас нумеруются с нулевого члена). Таким образом, для нескольких первых членов последовательности верна формула 3bn=2^n?(?1)^n, то есть bn=(2^n?(?1)^n)/3. Остаётся подставить эти значения в рекуррентную формулу и убедиться в справедливости этого равенства для всех n?0, применяя метод математической индукции.

С учётом того, что an=2bn?1 при n?1, имеем окончательный ответ
an=(2^n+2?(?1)^n)/3.
При n=0 формула также даёт верное значение a0=1.
В нашем случае n=11
ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

ОТВЕТ:

682

Нужна помощь?

Опубликовать

Добавил slava191 , просмотры: ☺ 1481 ⌚ 17.01.2014. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.

РЕШЕНИЕ ОТ slava191

Подобная задача!

Кузнечик
Кузнечик прыгает по вершинам правильного треугольника ABC, прыгая каждый раз в одну из соседних вершин. Сколькими способами он может попасть из вершины A обратно в вершину A за 12 прыжков?

Решение:
Пусть кузнечик может совершить 1 прыжок, тогда число способов вернуться в вершину A равно 0, число способов попасть на вершину B равно 1.
Пусть всего 2 прыжка. Тогда число способов попасть обратно равно 2, а число способов попасть на вершину B равно 1.
Пусть A(k) - число способов вернуться в вершину A за k прыжков, B(k) - число способов попасть на вершину B за k прыжков. Тогда получаем, что A(k+1)=B(k)+C(k)=2B(k).
Также B(k+1)=A(k)+C(k)=A(k)+B(k)
(C(k) аналогичный показатель для вершины C, очевидно, что C(k)=B(k))
Итак, имеем два рекуррентных соотношения: A(k+1)=2B(k),B(k+1)=A(k)+B(k)
A(1)=0,B(1)=1,A(2)=2,B(2)=1,A(3)=2,B(3)=3 и т.д. Получаем A(12)=1366.

Ответ: 1366.
ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ 11/30 и 17/36 приводим к общему знаменателю 360 11/30=(11*12)/(30*12)=132/360 17/36=(17*10)/(36*10)=170/360 1) (11/30)-(17/36)=(132/360)-(170/360) = - 38/360= =-19/180 2) (-19/180):(19/45)=(-19/180)*(45/19)= - (45/180) = = -1/4 к задаче 28599

SOVA ✎ Решаем однородное уравнение второго порядка с постоянными коэффициентами 5y'' + 9y'–2y=0 Составляем характеристическое уравнение: 5k^2+9k-2=0 D=9^2-4*5*(-2)=81+40=121=11^2 k_(1)=(-9-11)/10=-2 или k_(2)=(-9+11)/10=0,2 Общее решение однородного уравнения имеет вид: y_(одн.)=С_(1)e^(-2x) + C_(2)e^(0,2x) Частное решение данного неоднородного уравнения находим в виде у_(част)=Acos2x+Bsin2x Находим y`_(част)=-2Аsn2x+2Bcos2x y``_(част)=-4Аcos2x-4Bsin2x Подставляем y_(част), y`_(част), y``_(част) в данное уравнение: 5*(- 4Аcos2x - 4Bsin2x) + 9*(-2Аsn2x+2Bcos2x) -2*(Acos2x+Bsin2x) = 2 sin2x-3cos2x Раскрываем скобки и группируем слагаемые с sin2x и cos2x (-22B -18A)sin2x+(-22A+18B)cos2B=2sin2x-3cos2x {-22B -18A=2 {-22A+18B=-3 {-9A - 11B = 1 {-22A +9B=-3 Первое уравнение умножим на 9, второе на 11 {-81A -99B=9 {-242A +99B=-33 Cкладываем 323А=24 А=24/323 B=(-9A-1)/11=-49/323 О т в е т. y=y_(одн)+у_(част)=С_(1)e^(-2x) + C_(2)e^(0,2x)+(1/323)*(24sin2x-49cos2x) к задаче 28604

SOVA ✎ Так как сos2x=2cos^2x-1, то 2cos^2x-1+2cos^2x=0 ⇒ 4cos^2x=1 ⇒ cos^2x=1/4 ⇒ cosx= ± 1/2 cosx=1/2 ⇒ x= (± Pi/3)+2Pik, k ∈ Z или cosx= - 1/2 ⇒ x = ( ± 2Pi/3)+2Pin, n ∈ Z О т в е т. (± Pi/3)+2Pik, ( ± 2Pi/3)+2Pin, k , n ∈ Z к задаче 28605

SOVA ✎ к задаче 28560

SOVA ✎ 2. Интеграл вычисляют методом интегрирования по частям u=x^2 v=sin2xdx du=2xdx v=-(1/2)cos2x ∫ x^2sin2xdx=-(x^2/2)cos2x+∫ xcos2xdx= u=x dv=cos2xdx du=dx v=(1/2)sin2x =-(x^2/2)cos2x+(x/2)sin2x- ∫ (1/2)sin2xdx= =-(x^2/2)cos2x+(x/2)sin2x+(1/4)cos2x + C 3. Линейное дифференциальное уравнение первого порядка. Решаем однородное уравнение y`-(y/x)=0 dy/dx=y/x- уравнение с разделяющимися переменными dy/y=dx/x ∫ dy/y= ∫ dx/x ln||=ln|x|+lnC y=Cx Применяем метод вариации произвольной постоянной у=С(х)*х y`=C`(x)*x+C(x)*x` y`=C`(x)*x+C(x) Подставляем в данное уравнение C`(x)*x+C(x)-С(х)*х/х=(х+1)/х C`(x)*x=(х+1)/х C`(x)=(х+1)/х^2 C(x)= ∫ (x+1)dx/x^2= ∫ dx/x+ ∫ dx/x^2=ln|x|-(1/x)+C y=(ln|x|-(1/x)+C)*x y=xlnx-1+Cx - общее решение данного уравнения к задаче 28596