ЗАДАЧА 490 Найдите количество восьмизначных чисел,

УСЛОВИЕ:

Найдите количество восьмизначных чисел, в десятичной записи которых могут встречаться только цифры 3, 4, 5, 6 и таких, что каждая цифра не меньше предыдущей

РЕШЕНИЕ:

Число сочетаний из 11 по 8
ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

ОТВЕТ:

165

Нужна помощь?

Опубликовать

Добавил slava191 , просмотры: ☺ 1079 ⌚ 16.01.2014. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.

РЕШЕНИЕ ОТ slava191

Подобная задача!
ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ x=1/sint dx=-costdt/sin^2t = ∫ (sin^3t*sint/cost)*(-costdt/sin^2t)= = -∫ sin^2tdt=- ∫ (1-cos2t)/2=(-1/2)*t+(1/2)sin2t+C sint=1/x ⇒ t=arcsin(1/x) cost=sqrt(1-(1/x)^2) cost=sqrt(x^2-1)/x (-1/2)*t+(1/2)sin2t+C=(-1/2)*t+(1/2)*2sintcost+C =(-1/2)*arcsin(1/x)+(1/x)*sqrt((x^2-1)/x) + C= =(-1/2)*arcsin(1/x)+sqrt((x^2-1)/x^2) + C= к задаче 26650

SOVA ✎ Из второго уравнения x+y+7=7 x+y=0 y=-x Первое уравнение квадратное относительно x^2+y^2-4x+4=t at^2+(6a^2-3a-2)*t-12a+6=0 D=(6a^2-3a-2)^2-4*a*(-12a+6)= =36a^4+9a^2+4-36a^3-24a^2+12a+48a^2-24a= =36a^4+9a^2+4-36a^3-24a^2+12a+48a^2-24a= =36a^4-36a^3+33a^2-12a+4 больше или равно 0 Обозначим g(a)=36a^4-36a^3+33a^2-12a+4 g(a) > 0 при любом а График расположен выше оси Ох ( см. рис) Значит при любом а квадратное уравнение at^2+(6a^2-3a-2)*t-12a+6=0 имеет два корня t_(1)(a) и t_(2)(a) обратная замена приводит к двум уравнениям x^2-4x+y^2+4=t_(1) (а) или x^2-4x+y^2+4=t_(2)(a) Каждое уравнение представляет собой окружность. Надо чтобы первая окружность пересекала прямую у=-х в двух точках, а вторая окружность хотя бы в одной и наоборот. Пока других соображений нет к задаче 26649

SOVA ✎ ОДЗ: {2x-1 > 0; 2x-1 ≠ 1 ⇒ x ∈ (0,5; 1) U(1;+ бесконечность ) {9x^2-12x+4 > 0 ⇒ (3x-2)^2 > 0 ⇒ x ≠ 2/3 {3x-2 > 0 ⇒ x > 2/3 (6x^2-7x+2 > 0 ⇒ D=49-48=1 x ∈ (- бесконечность;1/2)U(2/3;+ бесконечность ) {3log_(2x-1)(6x^2-7x+2)-2 ≠ 0 ⇒ (6x^2-7x+2)^3 ≠ (2x-1)^2 ⇒ (2x-1)^3*(3x-2)^3 ≠ (2x-1)^2 ⇒ (2x-1)^2*(2x-1)*(3x-2)^3-1) ≠ 0 ⇒ 2x-1 ≠ 0 или (2x-1)*(3x-2)^3 ≠ 1 ⇒ x ≠ 1 или x ≠ a, 0 < a < 1 и не войдет в ОДЗ ОДЗ: (3/2; + бесконечность ) В условиях ОДЗ log_(2x-1)(9x^2-12x+4)=log-(2x-1)(3x-2)^2=2log_(2x-1)(3x-2); log^2_(2x-1)(9x^2-12x+4)=(2log_(2x-1)(3x-2))^2=4log^2_(2x-1)(3x-2); log_(2x-1)(6x^2-7x+2)=log_(2x-1)(2x-1)(3x-2)= =log_(2x-1)(2x-1)+log_(2x-1)(3x-2)=1+log_(2x-1)(3x-2) Замена переменной log_(2x-1)(3x-2)=t Неравенство принимает вид (4t^2-10t+18)/((3+3t)-2) меньше или равно 2; (4t^2-16t+16)/(3t+1) меньше или равно 0 так как 4t^2-16t+16 > 0 при любом t ⇒ 3t+1 < 0 t < -1/3 log_(2x-1)(3x-2) < -1/3 (2x-1-1)*(3x-2-(2x-1)^(-1/3)) < 0 (2x-2)*(3x-2-(1/∛(2x-1))) < 0 При x ∈ ОДЗ 2x-2 > 0 значит (3x-2 - (1/∛2x-1)) < 0 ⇒ (3x-2)^3*(2x-1) < 1 см последнее неравенство при нахождении ОДЗ Решением служит (a;1) , который не входит в ОДЗ Cм. рис. Графики у=(2х-1)(3х-2)^3 и y=1 О т в е т. Нет решений к задаче 26647

SOVA ✎ у`=(х^2–31х+31)`*е^(15–х)+(x^2-31x+31)*(e^(15-x))` у`=(2x–31)*е^(15–х)+(x^2-31x+31)*(e^(15-x))*(15-x)` у`=(2x–31)*е^(15–х)+(x^2-31x+31)*(e^(15-x))*(-1) y`=e^(15-x)*(2x-31-x^2+31x-31) y`=e^(15-x)*(-x^2+33x-62) y`=0 e^(15-x) > 0 при любом х -x^2+33x-62=0 x^2-33x+62=0 D=(-33)^2-4*62=1089-248=841=41^2 x_(1)=(33-41)/2=-4 или x_(2)=(33+41)/2=37 _-__ (-4) __+___ (37) __-__ x=-4 - точка минимума, производная меняет знак с - на + к задаче 26645

SOVA ✎ x^2-10x+25-x^2=3 -10x=-22 x=22/10 x=2,2 к задаче 26642