∫(from 1 to ∞) (x dx) / (16x4 – 1)
∫ + ∞1xdx/((4x2)2–1)= =(1/8) ∫ + ∞1(8xdx)/((4x2)2–1)= =(1/8) · (1/2) ln |(4x2–1)/(4x2+1)|+ ∞ 1= =(1/16)limx → ∞ ln |(4x2–1)/(4x2+1)|–(1/16)ln (3/5)= =(1/16)·ln1–(1/16)·(3/5)=–3/80