✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 484 Отсортировать кубики по цветам, внутри

УСЛОВИЕ:

Отсортировать кубики по цветам, внутри одного цвета – по размеру, а внутри од-ного размера – по весу.

РЕШЕНИЕ:

type
kubik=record
color:string;
size:integer;
weight:integer;
end;

var
m:array [1..N] of kubik;
i:integer;d:string;j:integer;
d2:integer;
begin
for i:=1 to N do begin
writeln('Цвет ', i, ' кубика');
readln(m[i].color);
writeln('Размер ', i, ' кубика');
readln(m[i].size);
writeln('Вес ', i,' кубика');
readln(m[i].weight);
end;

for j:=1 to N do
for i:=1 to N-j do
begin
if m[i].weight>m[i+1].weight then

begin
d2:=m[i].weight;
m[i].weight:=m[i+1].weight;
m[i+1].weight:=d2;
end;
end;

for j:=1 to N do
for i:=1 to N-j do
begin
if m[i].size>m[i+1].size then
begin
d2:=m[i].size;
m[i].size:=m[i+1].size;
m[i+1].size:=d2;
end;
end;

for j:=1 to N do
for i:=1 to N-j do
begin
if m[i].color>m[i+1].color then
begin
d:=m[i].color;
m[i].color:=m[i+1].color;
m[i+1].color:=d;
end;
end;

for i:=1 to N do
writeln('цвет: ',m[i].color,' размер: ',m[i].size,' вес: ',m[i].weight);

end.

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

в решение

Добавил slava191, просмотры: ☺ 963 ⌚ 16.01.2014. информатика 10-11 класс

Решения пользователей

Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
г)
{y-5x+11=0
{5y+x-12=0

(прикреплено изображение)
✎ к задаче 43566
Область определения (4;+ ∞ )

y`=1/(x-4) - 4

y` = 0

1/(x-4) - 4 =0

(1-4x+16)/(x-4)=0

1-4x+16=0

x=17/4


(4) _ +__ (17/4) __-__


x=17/4 - точка максимума, производная меняет знак с + на -
✎ к задаче 43563
y`=x^2-9

y`=0

x^2-9=0

x= ± 3


_+__ (-3) _-__ (3) _+__


x=-3 - точка максимума

х=3 - точка минимума.

Наиб и наим нет. См график

Есть значения, которые больше чем в точке максимума и меньше чем в точке минимума.

Поэтому можно говорить о наибольшем и наименьшем значении на отрезке. Отрезок не задан
(прикреплено изображение)
✎ к задаче 43560
Линейное неоднородное уравнение второго порядка с постоянными коэффициентами.

Решаем однородное:
y''+36y=0

Составляем характеристическое уравнение:
λ^2+36=0


λ _(1,2)= ± 6i

– корни комплексные

α=0 β=6

Общее решение однородного имеет вид:

y_(одн.)=e^(αx)*(С_(1)*cosβх+C_(2)*sinβx)

В данном случае

y_(одн.)=e^(0)*(С_(1)*cos6x+C_(2)*sin6x)

y_(одн.)=С_(1)*cos6x+C_(2)*sin6x




частное решение неоднородного уравнение находим в виде:
y_(част)=(ax+b)*e^(x)


Находим производную первого, второго порядка

y`_(част)=a*e^(x)+(ax+b)*e^(x)=e^(x)*(ax+a+b)

y``_(част)=e^(x)*(ax+a+b)+e^(x)*(a)=e^(x)*(ax+2a+b)


подставляем в данное уравнение:

e^(x)*(ax+2a+b)+36*(ax+b)*e^(x) = x e^(x)

сокращаем на e^(x)
ax+2a+b+ax+b=x

2a=1 ⇒ a=1/2

2a+2b=0 ⇒ a=-b ⇒ b=-a=-1/2

y_(част)=((1/2)x-(1/2))*e^(x)

О т в е т.
y=y_(одн)+y_(част)=С_(1)*cos6x+C_(2)*sin6x+((1/2)x-(1/2))*e^(x)



✎ к задаче 43561
y`=6*(-sinx)+3sqrt(3)

y`=0

6*(-sinx)+3sqrt(3)=0

sinx=sqrt(3)/2

x=(-1)^(k)*(π/3)+πk, k ∈ Z

отрезку [0;π/2] принадлежит x= (π/3)

[0] __+__ (π/3) __-_ [π/2]

х=π/3 - точка максимума, значит в этой точке наибольшее значение на отрезке

О т в е т. y(π/3)= 6*cos(π/3)+3sqrt(3)*(π/3)-sqrt(3)*π+8=6*(1/2)+8=[b]11[/b]
✎ к задаче 43562