ЗАДАЧА 484 Отсортировать кубики по цветам, внутри

УСЛОВИЕ:

Отсортировать кубики по цветам, внутри одного цвета – по размеру, а внутри од-ного размера – по весу.

РЕШЕНИЕ:

type
kubik=record
color:string;
size:integer;
weight:integer;
end;

var
m:array [1..N] of kubik;
i:integer;d:string;j:integer;
d2:integer;
begin
for i:=1 to N do begin
writeln('Цвет ', i, ' кубика');
readln(m[i].color);
writeln('Размер ', i, ' кубика');
readln(m[i].size);
writeln('Вес ', i,' кубика');
readln(m[i].weight);
end;

for j:=1 to N do
for i:=1 to N-j do
begin
if m[i].weight>m[i+1].weight then

begin
d2:=m[i].weight;
m[i].weight:=m[i+1].weight;
m[i+1].weight:=d2;
end;
end;

for j:=1 to N do
for i:=1 to N-j do
begin
if m[i].size>m[i+1].size then
begin
d2:=m[i].size;
m[i].size:=m[i+1].size;
m[i+1].size:=d2;
end;
end;

for j:=1 to N do
for i:=1 to N-j do
begin
if m[i].color>m[i+1].color then
begin
d:=m[i].color;
m[i].color:=m[i+1].color;
m[i+1].color:=d;
end;
end;

for i:=1 to N do
writeln('цвет: ',m[i].color,' размер: ',m[i].size,' вес: ',m[i].weight);

end.
ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

ОТВЕТ:

в решение

Нужна помощь?

Опубликовать

Добавил slava191 , просмотры: ☺ 563 ⌚ 16.01.2014. информатика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.
Увы, но свой вариант решения никто не написал... Будь первым!

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

vk397114329 ✎ Решение: cosx=cos2x*cos3x cos2x*cos3x=1/2(cosx+cos5x); cosx-1/2(cosx)-1/2(cos5x)=0; 1/2(cosx)-1/2(cos5x)=0; cosx-cos5x=sin3x*sin2x=0 sin3x=0. отсюда 3x=Pik. x=Pik/3,k ∈ z 2) sin2x=0. x=Pik/2 Ответ:Piк/3, Piк/2 к задаче 22563

SOVA ✎ Формула cos альфа *cos бета =(1/2)*(cos( альфа + бета )+cos( альфа - бета )) cosx=(1/2)cos5x+(1/2)cosx (1/2)*(cos5x-cosx)=0 Формула cos альфа -cos бета=-2* sin(( альфа + бета )/2)*sin(( альфа - бета )/2) sin3x*sin2x=0 3x=Pik, k ∈ Z или 2х=Pin, n ∈ Z x=(Pi/3)k, k ∈ Z или х=(Pi/2)*n, n ∈ Z О т в е т. (Pi/3)k; (Pi/2)*n, k, n ∈ Z к задаче 22563

SOVA ✎ к задаче 22564

vk397114329 ✎ Решение: Из тождества sin^2x+cos^2x=1 найдем cosx=sgrt(1-sin^2x)=sgrt(1-0.64)=0.6 По определению cosA=AC/AB. отсюда АВ=AC/cosA. AB=9/0.6=15. Ответ 15 к задаче 11947

SOVA ✎ к задаче 22562