✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 484 Отсортировать кубики по цветам, внутри

УСЛОВИЕ:

Отсортировать кубики по цветам, внутри одного цвета – по размеру, а внутри од-ного размера – по весу.

РЕШЕНИЕ:

type
kubik=record
color:string;
size:integer;
weight:integer;
end;

var
m:array [1..N] of kubik;
i:integer;d:string;j:integer;
d2:integer;
begin
for i:=1 to N do begin
writeln('Цвет ', i, ' кубика');
readln(m[i].color);
writeln('Размер ', i, ' кубика');
readln(m[i].size);
writeln('Вес ', i,' кубика');
readln(m[i].weight);
end;

for j:=1 to N do
for i:=1 to N-j do
begin
if m[i].weight>m[i+1].weight then

begin
d2:=m[i].weight;
m[i].weight:=m[i+1].weight;
m[i+1].weight:=d2;
end;
end;

for j:=1 to N do
for i:=1 to N-j do
begin
if m[i].size>m[i+1].size then
begin
d2:=m[i].size;
m[i].size:=m[i+1].size;
m[i+1].size:=d2;
end;
end;

for j:=1 to N do
for i:=1 to N-j do
begin
if m[i].color>m[i+1].color then
begin
d:=m[i].color;
m[i].color:=m[i+1].color;
m[i+1].color:=d;
end;
end;

for i:=1 to N do
writeln('цвет: ',m[i].color,' размер: ',m[i].size,' вес: ',m[i].weight);

end.

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

в решение

Добавил slava191, просмотры: ☺ 774 ⌚ 16.01.2014. информатика 10-11 класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!
Увы, но свой вариант решения никто не написал... Будь первым!

Написать комментарий

Последнии решения
(прикреплено изображение) [удалить]
✎ к задаче 31880
Область определения (- ∞ ;-2) U (-2;2) U(2;+ ∞ )

y`= ((x^3)`*(x^2-4)-x^3*(x^2-4)`)/(x^2-4)^2

y`=((3x^2*(x^2-4)-x^3*(2x))/(x^2-4)^2

y`=(x^4 -12x^2)/(x^2-4)^2

y`=0

x^4 - 12x^2=0
x^2*(x^2-12)=0 ⇒
x^2 = 0 или x^2=12
x=0 или х = ± 2sqrt(3)

Знак производной:
__+___ (-2sqrt(3)) _-_ (-2) __-__ (0) _-__ (2) __-__ (2sqrt(3)) __+__

Функция монотонно убывает на (-2sqrt(3); - 2) и на (-2; 2 ) и на (-2; -2sqrt(3))
Функция монотонно возрастает
на (- ∞ ;-2sqrt(3)) и на (2sqrt(3);+ ∞ )

x=-2sqrt(3) - точка максимума
f(-2sqrt(3))=(-2sqrt(3))^2/((-2sqrt(3))^2-4)= -3sqrt(3)

х=2sqrt(3) - точка минимума
f(2sqrt(3))=(2sqrt(3))^2/((2sqrt(3))^2-4)= 3sqrt(3)
(прикреплено изображение) [удалить]
✎ к задаче 31884
dy=f`(x)*dx
dy=2^(cosx)*(cosx)`*ln2dx
dy=(-2ln2)sinx*2^(cosx)dx

dy=(-ln2)sinx*2^(cosx + 1)dx
[удалить]
✎ к задаче 31882
Имеем неопределенность ∞ ^(0).

Логарифмируем данную функцию
lny= x^2*ln(1/x)

Находим предел функции

z=lny

lim_(x→0)z=lim_(x→0) x^2*ln(1/x) = (неопределенность 0* ∞) сводится в неопределенности (0/0) или ( ∞ / ∞ ) и тогда можно применить правило Лопиталя.

lim_(x→0) x^2*ln(1/x)= lim_(x→0) (ln(1/x))/(1/x^2)= ( ∞ / ∞ )

=lim_(x→0) (ln(1/x)) `/(1/x^2) ` = lim_(x→0) (1/(1/x))*(1/x)`/(-2/x^3)=

= lim_(x→0) (1/(1/x))*(1/x)`/(-2/x^3)= lim_(x→0)(-x^2/2)= 0

lim_(x→0)z=0

Значит lim_(x→0) ln y =0 ⇒ lim_(x→0)y = e^(0)=1

О т в е т. 1
[удалить]
✎ к задаче 31883
(прикреплено изображение) [удалить]
✎ к задаче 31890