ctgx ≠ 0
квадратное:
ctg2x+5ctgx+4=0 ⇒ D=9; ctgx=–4 ⇒ x=arcctg(–4)+πk, k ∈ Z или
ctgx =–1 ⇒ x=arcctg(–1)+πk, k ∈ Z ⇒ x=(3π/4)+πn, n ∈ Z
5.
(tg3–1)–(tg2x–2tgx+1)=0
(tgx–1)·(tg2x+tgx+1–tgx+1)=0
(tgx–1)·(tg2x+2)=0
tgx–1=0
x=(π/4)+πn, n ∈ Z