Loading [MathJax]/extensions/tex2jax.js
Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 47466 ...

Условие

∫₄⁹ 1/((x–3)(√x +1)) dx.

математика ВУЗ 503

Решение

Замена переменной:
[m]\sqrt{x}=t[/m] ⇒ [m] x=t^2[/m]

[m]dx=2tdt[/m]

Пределы интегрирования

если x=4, то [m]\sqrt{4}=t[/m], t=2
если x=9, то [m]\sqrt{9}=t[/m], t=3

[m] ∫ ^{3}_{2}\frac{2tdt}{(t^2-3)\cdot }= ∫ ^{3}_{2}\frac{2tdt}{t^2-1}=∫ ^{3}_{2}\frac{d(t^2-3)}{t^2-1}=[/m]

[m]=\frac{1}{2\cdot \sqrt{3}} ln|\frac{t-\sqrt{3}}{t+\sqrt{3}}|^{3}_{2}=[/m]

[m]=\frac{1}{2\sqrt{3}}ln|\frac{3-\sqrt{3}}{3+\sqrt{3}}|-\frac{1}{2\sqrt{3}}ln|\frac{2-\sqrt{3}}{2+\sqrt{3}}| [/m]

Обсуждения

Написать комментарий

Меню

Присоединяйся в ВК