Представьте двойной интеграл ∫∫_D f(x, y) dx dy в виде повторного интеграла, если область интегрирования D ограничена линиями x = y^2 и y = -1/2 x.
a) верно y=-(1/2)x ⇒ x=-2y -2< y <0 y^2< x < -2y и с) верно. x=y^2 ⇒ x= ± sqrt(y) Верхняя ветвь : x=sqrt(y) Нижняя ветвь : х=-sqrt(y) 0 < x < 4 Cм. рис.