(√3 – tg x) / (1 + √3 tg x) = 1
— принадлежащие отрезку x ∈ [–π; 2π].
{1+√3tgx ≠ 0 ⇒ tgx ≠ [m]\frac{1}{\sqrt{3}}[/m]
Пропорция.
Умножаем крайние и средние члены пропорции
√3–tgx=1+√3tgx
(1+√3)·tgx=√3–1
tgx=[m]\frac{\sqrt{3}-1}{\sqrt{3}+1}[/m]
tgx=[m]\frac{(\sqrt{3}-1)(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}[/m]
tgx =[m]\frac{(\sqrt{3})^2-2\sqrt{3}+1}{(\sqrt{3})^2-1}[/m]
tgx =[m]\frac{4-2\sqrt{3}}{2}[/m]
tgx=[m]2-\sqrt{3}[/m]
x=arctg [m](2-\sqrt{3})[/m] + πk, k ∈ Z