ЗАДАЧА 465 У семейной пары дни рождения в один и

УСЛОВИЕ:

У семейной пары дни рождения в один и тот же день. При очередном праздновании их общего дня рождения муж заметил, что сейчас ему втрое больше лет, чем было его жене тогда, когда ему было столько лет, сколько жене сейчас. А когда ей будет столько лет, сколько ему теперь, им обоим вместе будет 70 лет. Сколько лет мужу сейчас?

О решении...

ОТВЕТ:

30

Добавил slava191 , просмотры: ☺ 708 ⌚ 14.01.2014. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.
Увы, но свой вариант решения никто не написал... Будь первым!

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ 11/30 и 17/36 приводим к общему знаменателю 360 11/30=(11*12)/(30*12)=132/360 17/36=(17*10)/(36*10)=170/360 1) (11/30)-(17/36)=(132/360)-(170/360) = - 38/360= =-19/180 2) (-19/180):(19/45)=(-19/180)*(45/19)= - (45/180) = = -1/4 к задаче 28599

SOVA ✎ Решаем однородное уравнение второго порядка с постоянными коэффициентами 5y'' + 9y'–2y=0 Составляем характеристическое уравнение: 5k^2+9k-2=0 D=9^2-4*5*(-2)=81+40=121=11^2 k_(1)=(-9-11)/10=-2 или k_(2)=(-9+11)/10=0,2 Общее решение однородного уравнения имеет вид: y_(одн.)=С_(1)e^(-2x) + C_(2)e^(0,2x) Частное решение данного неоднородного уравнения находим в виде у_(част)=Acos2x+Bsin2x Находим y`_(част)=-2Аsn2x+2Bcos2x y``_(част)=-4Аcos2x-4Bsin2x Подставляем y_(част), y`_(част), y``_(част) в данное уравнение: 5*(- 4Аcos2x - 4Bsin2x) + 9*(-2Аsn2x+2Bcos2x) -2*(Acos2x+Bsin2x) = 2 sin2x-3cos2x Раскрываем скобки и группируем слагаемые с sin2x и cos2x (-22B -18A)sin2x+(-22A+18B)cos2B=2sin2x-3cos2x {-22B -18A=2 {-22A+18B=-3 {-9A - 11B = 1 {-22A +9B=-3 Первое уравнение умножим на 9, второе на 11 {-81A -99B=9 {-242A +99B=-33 Cкладываем 323А=24 А=24/323 B=(-9A-1)/11=-49/323 О т в е т. y=y_(одн)+у_(част)=С_(1)e^(-2x) + C_(2)e^(0,2x)+(1/323)*(24sin2x-49cos2x) к задаче 28604

SOVA ✎ Так как сos2x=2cos^2x-1, то 2cos^2x-1+2cos^2x=0 ⇒ 4cos^2x=1 ⇒ cos^2x=1/4 ⇒ cosx= ± 1/2 cosx=1/2 ⇒ x= (± Pi/3)+2Pik, k ∈ Z или cosx= - 1/2 ⇒ x = ( ± 2Pi/3)+2Pin, n ∈ Z О т в е т. (± Pi/3)+2Pik, ( ± 2Pi/3)+2Pin, k , n ∈ Z к задаче 28605

SOVA ✎ к задаче 28560

SOVA ✎ 2. Интеграл вычисляют методом интегрирования по частям u=x^2 v=sin2xdx du=2xdx v=-(1/2)cos2x ∫ x^2sin2xdx=-(x^2/2)cos2x+∫ xcos2xdx= u=x dv=cos2xdx du=dx v=(1/2)sin2x =-(x^2/2)cos2x+(x/2)sin2x- ∫ (1/2)sin2xdx= =-(x^2/2)cos2x+(x/2)sin2x+(1/4)cos2x + C 3. Линейное дифференциальное уравнение первого порядка. Решаем однородное уравнение y`-(y/x)=0 dy/dx=y/x- уравнение с разделяющимися переменными dy/y=dx/x ∫ dy/y= ∫ dx/x ln||=ln|x|+lnC y=Cx Применяем метод вариации произвольной постоянной у=С(х)*х y`=C`(x)*x+C(x)*x` y`=C`(x)*x+C(x) Подставляем в данное уравнение C`(x)*x+C(x)-С(х)*х/х=(х+1)/х C`(x)*x=(х+1)/х C`(x)=(х+1)/х^2 C(x)= ∫ (x+1)dx/x^2= ∫ dx/x+ ∫ dx/x^2=ln|x|-(1/x)+C y=(ln|x|-(1/x)+C)*x y=xlnx-1+Cx - общее решение данного уравнения к задаче 28596