cos4 2x–sin4 2x ≤ 0
cos4(2x)–sin4(2x)=(cos2(2x)–sin2(2x))·(cos2(2x)+sin2(2x)= =(cos2(2x)–sin2(2x))·1=cos(2·2x)=cos4x cos4x ≤ 0 (π/2)+2πn ≤ 4x ≤ (–π/2)+2π+2πn, n ∈ Z (π/2)+2πn ≤ 4x ≤ (3π/2)+2πn, n ∈ Z (π/8)+(π/2)·n ≤ x ≤ (3π/8)+(π/2)·n, n ∈ Z