sin2 α =2sin α ·cos α ⇒ sin α ·cos α =(1/2)sin2 α
sin4x/5 cos4x/5=(1/2)sin(8x/5)
(1/2)sin(8x/5) ≥ –1/4
sin(8x/5) ≥ –1/2
–(π/6)+2πn < 8x/5 < (–5π/6)+2π+2πn, n ∈ Z
–(π/6)+2πn < 8x/5 < (7π/6)+2πn, n ∈ Z
Делим на (8/5) или умножаем на (5/8)
– (5/8)·(π/6)+2·(5/8)πn < x < (5/8)·(7π/6)+2·(5/8)πn, n ∈ Z
–(5π/48)+(5/4)·π·n < x < (35π/48)+(5/4)·π·n, n ∈ Z