(2π/3)–(π/2)+2πn ≤ –5x ≤ (4π/3)–(π/2)+2πn, n ∈ Z
(π/6)+2πn ≤ –5x ≤ (5π/6)+2πn, n ∈ Z
–(π/30)–(2π/5)·n ≥ x ≥ –(π/6)–(2π/5)·n, n ∈ Z
–(π/6)+(2π/5)·k ≤ x ≤ (–π/30) +(2π/5)·k, k ∈ Z, k=–n
По формуле приведения cos(pi/2–a)=sina получаем
sin(5x) ≤ –1/2.
–5pi/6+2pik ≤ 5x ≤ –pi/6+2pik.k ∈ z
–pi/6 +2pik/5 ≤ x ≤ –pi/30+2pik/5, k ∈ z