✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 45395 ответы на вопросы:

Джек Лондон "там,

УСЛОВИЕ:

ответы на вопросы:

Джек Лондон "там, где расходятся пути"
1) какими вы видите золотоискателей в начале рассказа? О чем мечтает каждый из них?
2) в какой момент начали расходиться пути героев? Какой выбор должен был сделать каждый человек?
3)в момент описания побега есть фраза "эта ночь могла бы кончится иначе, если бы.."
Что скрывается за этим "если бы"

Добавил sabina5567, просмотры: ☺ 27 ⌚ 2020-03-26 15:13:30. литература 6-7 класс

Решения пользователей

На нашем сайте такое бывает редко, но решение к данной задаче еще никто не написал.

Что Вы можете сделать?

  1. Напишите решение или хотя бы свои догадки первым.
  2. Заказать эту задачу у партнеров сайта: на этой странице.
  3. Найдите похожую задачу. Используйте поиск.
Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
C2H5-NH2 + HCl = C2H5-NH3Cl
C2H5-NH2 + HNO3 = [C2H5-NH3]NO3
ответ -14
✎ к задаче 46111
ответ - 25
донорно-акцепторный механизм образования ковалентной связи состоит в том, что один атом донирует пару электронов для другого атом с пустой орбиталью.
примеры веществ с тким механизмом образования связи: аммоний, озон, азотная кислота и нитраты, угарный газ.
✎ к задаче 46103
1
a)

\left\{\begin{matrix} y=2x & \\ 4x+5y=28 & \end{matrix}\right.\left\{\begin{matrix} y=2x & \\ 4x+5\cdot 2x=28 & \end{matrix}\right.\left\{\begin{matrix} y=2x & \\ 14x=28 & \end{matrix}\right.\left\{\begin{matrix} y=2\cdot 2 & \\ x=2 & \end{matrix}\right.

б)

\left\{\begin{matrix} 2u-v=3 & \\ 7u+3v=4 & \end{matrix}\right.\left\{\begin{matrix} 2u-3=v & \\ 7u+3\cdot(2u-3)=4 & \end{matrix}\right.\left\{\begin{matrix} v=2u-3 & \\7u+6u-9=4 & \end{matrix}\right.

\left\{\begin{matrix}v=2u-3 \cdot 2 & \\ 13u=13 & \end{matrix}\right..\left\{\begin{matrix}v=2\cdot -3 \cdot 2 & \\ u=1 & \end{matrix}\right..\left\{\begin{matrix}v=-1 \cdot 2 & \\ u=1 & \end{matrix}\right.

в)

\left\{\begin{matrix} p-3q=1 & \\ p^2-9q=7 & \end{matrix}\right.\left\{\begin{matrix} p=3q+1 & \\(3q+1)^2-9q=7 & \end{matrix}\right.\left\{\begin{matrix} p=3q+1 & \\9q^2+6q+1-9q=7 & \end{matrix}\right.


\left\{\begin{matrix} p=3q+1 & \\9q^2-3q+1=0 & \end{matrix}\right.
\left\{\begin{matrix} p=3q+1 & \\(3q-1)^2=0 & \end{matrix}\right.\left\{\begin{matrix} p=3q+1 & \\3q-1=0 & \end{matrix}\right.

\left\{\begin{matrix} p=3\cdot \frac{1}{3} +1 & \\q=\frac{1}{3} & \end{matrix}\right.\left\{\begin{matrix} p=2 & \\q=\frac{1}{3} & \end{matrix}\right.


г)


\left\{\begin{matrix} x=2z\\y-z+3=0 \\ x+y+z=0 \end{matrix}\right.\left\{\begin{matrix} x=2z\\y=z-3 \\ 2z+(z-3)+z=0 \end{matrix}\right.\left\{\begin{matrix} x=2z\\y=z-3 \\ 4z=3 \end{matrix}\right.\left\{\begin{matrix} x=2\cdot\frac{3}{4} \\y=\frac{3}{4}-3 \\ z=\frac{3}{4} \end{matrix}\right.

\left\{\begin{matrix} x=\frac{3}{2} \\y=-\frac{9}{4} \\ z=\frac{3}{4} \end{matrix}\right.


✎ к задаче 46669
Δ DEC подобен Δ ВАС ( ED || AB)

EC:AC=ED: AB

3:4=(6/4):AB

AB=2
(прикреплено изображение)
✎ к задаче 46657
О т в е т. 3) (прикреплено изображение)
✎ к задаче 46668