✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 45391 найти интервалы возрастания и убывания

УСЛОВИЕ:

найти интервалы возрастания и убывания функции f(x)= x^3 -x^2-x+2

Добавил vk179559046, просмотры: ☺ 70 ⌚ 2020-03-26 13:50:10. математика 1k класс

Решения пользователей

РЕШЕНИЕ ОТ sova

y`=3x^2-2x-1

y`=0

3x^2-2x-1=0
D=4+12=16

x_(1)=-1/3; x_(2)=1

Знак производной( производная это квадратичная функция, график парабола, ветви вверх a=3>0; пересекает ось Ох в точках (-1/3) и 1):
меньше нуля на (-1/3;1)

__-__ (-1/3) __-__ (1) __+__

Там, где y`>0 функция [b]возрастает[/b]
то есть [b]на (- ∞ ; -1/3) и на (1;+ ∞ )[/b]

Если y`<0 , то функция [b]убывает[/b]
то есть на[b] ( -1/3;1)[/b]

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
C2H5-NH2 + HCl = C2H5-NH3Cl
C2H5-NH2 + HNO3 = [C2H5-NH3]NO3
ответ -14
✎ к задаче 46111
ответ - 25
донорно-акцепторный механизм образования ковалентной связи состоит в том, что один атом донирует пару электронов для другого атом с пустой орбиталью.
примеры веществ с тким механизмом образования связи: аммоний, озон, азотная кислота и нитраты, угарный газ.
✎ к задаче 46103
1
a)

\left\{\begin{matrix} y=2x & \\ 4x+5y=28 & \end{matrix}\right.\left\{\begin{matrix} y=2x & \\ 4x+5\cdot 2x=28 & \end{matrix}\right.\left\{\begin{matrix} y=2x & \\ 14x=28 & \end{matrix}\right.\left\{\begin{matrix} y=2\cdot 2 & \\ x=2 & \end{matrix}\right.

б)

\left\{\begin{matrix} 2u-v=3 & \\ 7u+3v=4 & \end{matrix}\right.\left\{\begin{matrix} 2u-3=v & \\ 7u+3\cdot(2u-3)=4 & \end{matrix}\right.\left\{\begin{matrix} v=2u-3 & \\7u+6u-9=4 & \end{matrix}\right.

\left\{\begin{matrix}v=2u-3 \cdot 2 & \\ 13u=13 & \end{matrix}\right..\left\{\begin{matrix}v=2\cdot -3 \cdot 2 & \\ u=1 & \end{matrix}\right..\left\{\begin{matrix}v=-1 \cdot 2 & \\ u=1 & \end{matrix}\right.

в)

\left\{\begin{matrix} p-3q=1 & \\ p^2-9q=7 & \end{matrix}\right.\left\{\begin{matrix} p=3q+1 & \\(3q+1)^2-9q=7 & \end{matrix}\right.\left\{\begin{matrix} p=3q+1 & \\9q^2+6q+1-9q=7 & \end{matrix}\right.


\left\{\begin{matrix} p=3q+1 & \\9q^2-3q+1=0 & \end{matrix}\right.
\left\{\begin{matrix} p=3q+1 & \\(3q-1)^2=0 & \end{matrix}\right.\left\{\begin{matrix} p=3q+1 & \\3q-1=0 & \end{matrix}\right.

\left\{\begin{matrix} p=3\cdot \frac{1}{3} +1 & \\q=\frac{1}{3} & \end{matrix}\right.\left\{\begin{matrix} p=2 & \\q=\frac{1}{3} & \end{matrix}\right.


г)


\left\{\begin{matrix} x=2z\\y-z+3=0 \\ x+y+z=0 \end{matrix}\right.\left\{\begin{matrix} x=2z\\y=z-3 \\ 2z+(z-3)+z=0 \end{matrix}\right.\left\{\begin{matrix} x=2z\\y=z-3 \\ 4z=3 \end{matrix}\right.\left\{\begin{matrix} x=2\cdot\frac{3}{4} \\y=\frac{3}{4}-3 \\ z=\frac{3}{4} \end{matrix}\right.

\left\{\begin{matrix} x=\frac{3}{2} \\y=-\frac{9}{4} \\ z=\frac{3}{4} \end{matrix}\right.


✎ к задаче 46669
Δ DEC подобен Δ ВАС ( ED || AB)

EC:AC=ED: AB

3:4=(6/4):AB

AB=2
(прикреплено изображение)
✎ к задаче 46657
О т в е т. 3) (прикреплено изображение)
✎ к задаче 46668