lgx2=2lgx
lg2x2=(2lgx)2=4lg2x
4lg2x+1+lgx–6=0
4lg2x+lgx–5=0
D=1–4·4·(–5)=81
lgx=–5/4; lgx=1
x=10–5/4 или x=10
10 ∈ [1/10;√101]
10–5/4 < 10–1=0,1
10–5/4 ∉ [1/10;√101]
б)
log2(x+3)+1=log2(4+x)
1=log22
log2(x+3)+log22=log2(4+x)
log2(x+3)·2=log2(4+x)
(x+3)·2=4+x
2x+6=x+4
x=–2
Проверка:
log2(–2+3)+1=log2(4–2)
log21+1=log22
1=1 – верно
О т в е т. –2