✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 44597 Две системы. (Еще) Распишите (кратко)

УСЛОВИЕ:

Две системы. (Еще) Распишите (кратко) что будете делать, пожалуйста.

РЕШЕНИЕ ОТ u821511235 ✪ ЛУЧШЕЕ РЕШЕНИЕ

Вопрос к решению?
Нашли ошибку?

Добавил vk137953715, просмотры: ☺ 63 ⌚ 2020-02-27 13:35:11. предмет не задан класс не задан класс

Решения пользователей

РЕШЕНИЕ ОТ sova

1)
Замена
x+y=u
sqrt(xy)=v;
xy ≥ 0 ⇒ (x;y) в первой или третьей четверти

v ≥ 0

{u-v=7
{v^2=9 ⇒ так как v ≥ 0, v=3

и подставляем в первое

u=10

{x+y=10
{xy=9

[b]x=1;y=9[/b]
или
[b]x=9;y=1[/b]

О т в е т.(1;9);(9;1)
2) x-y=(sqrt(x)-sqrt(y))*(sqrt(x)+sqrt(y))

x-y=6*(sqrt(x)-sqrt(y))

Cистема примет вид:
{sqrt(y)+sqrt(x)=6
{6*(sqrt(x)-sqrt(y))=12 Делим на 2

{sqrt(y)+sqrt(x)=6
{sqrt(x)-sqrt(y)=2

Складываем:
2sqrt(x)=8
sqrt(x)=4 ⇒[b] x=16[/b]

y=x-12=16-12=[b]4[/b]

О т в е т.(16;4)

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
C2H5-NH2 + HCl = C2H5-NH3Cl
C2H5-NH2 + HNO3 = [C2H5-NH3]NO3
ответ -14
✎ к задаче 46111
ответ - 25
донорно-акцепторный механизм образования ковалентной связи состоит в том, что один атом донирует пару электронов для другого атом с пустой орбиталью.
примеры веществ с тким механизмом образования связи: аммоний, озон, азотная кислота и нитраты, угарный газ.
✎ к задаче 46103
1
a)

\left\{\begin{matrix} y=2x & \\ 4x+5y=28 & \end{matrix}\right.\left\{\begin{matrix} y=2x & \\ 4x+5\cdot 2x=28 & \end{matrix}\right.\left\{\begin{matrix} y=2x & \\ 14x=28 & \end{matrix}\right.\left\{\begin{matrix} y=2\cdot 2 & \\ x=2 & \end{matrix}\right.

б)

\left\{\begin{matrix} 2u-v=3 & \\ 7u+3v=4 & \end{matrix}\right.\left\{\begin{matrix} 2u-3=v & \\ 7u+3\cdot(2u-3)=4 & \end{matrix}\right.\left\{\begin{matrix} v=2u-3 & \\7u+6u-9=4 & \end{matrix}\right.

\left\{\begin{matrix}v=2u-3 \cdot 2 & \\ 13u=13 & \end{matrix}\right..\left\{\begin{matrix}v=2\cdot -3 \cdot 2 & \\ u=1 & \end{matrix}\right..\left\{\begin{matrix}v=-1 \cdot 2 & \\ u=1 & \end{matrix}\right.

в)

\left\{\begin{matrix} p-3q=1 & \\ p^2-9q=7 & \end{matrix}\right.\left\{\begin{matrix} p=3q+1 & \\(3q+1)^2-9q=7 & \end{matrix}\right.\left\{\begin{matrix} p=3q+1 & \\9q^2+6q+1-9q=7 & \end{matrix}\right.


\left\{\begin{matrix} p=3q+1 & \\9q^2-3q+1=0 & \end{matrix}\right.
\left\{\begin{matrix} p=3q+1 & \\(3q-1)^2=0 & \end{matrix}\right.\left\{\begin{matrix} p=3q+1 & \\3q-1=0 & \end{matrix}\right.

\left\{\begin{matrix} p=3\cdot \frac{1}{3} +1 & \\q=\frac{1}{3} & \end{matrix}\right.\left\{\begin{matrix} p=2 & \\q=\frac{1}{3} & \end{matrix}\right.


г)


\left\{\begin{matrix} x=2z\\y-z+3=0 \\ x+y+z=0 \end{matrix}\right.\left\{\begin{matrix} x=2z\\y=z-3 \\ 2z+(z-3)+z=0 \end{matrix}\right.\left\{\begin{matrix} x=2z\\y=z-3 \\ 4z=3 \end{matrix}\right.\left\{\begin{matrix} x=2\cdot\frac{3}{4} \\y=\frac{3}{4}-3 \\ z=\frac{3}{4} \end{matrix}\right.

\left\{\begin{matrix} x=\frac{3}{2} \\y=-\frac{9}{4} \\ z=\frac{3}{4} \end{matrix}\right.


✎ к задаче 46669
Δ DEC подобен Δ ВАС ( ED || AB)

EC:AC=ED: AB

3:4=(6/4):AB

AB=2
(прикреплено изображение)
✎ к задаче 46657
О т в е т. 3) (прикреплено изображение)
✎ к задаче 46668