✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 44524

УСЛОВИЕ:

Добавил vk207492402, просмотры: ☺ 104 ⌚ 2020-02-24 22:05:47. предмет не задан класс не задан класс

Решения пользователей

РЕШЕНИЕ ОТ sova

1) Найти ОДЗ

Под знаком логарифма должно быть положительное выражение
Основание логарифмической функции должно быть положительным и не равно 1

{27x>0 ⇒
{81x>0 ⇒
{81x ≠ 1 ⇒

2)
Перейти к логарифмам по одинаковому основанию. Лучше всего к основанию 3

Применить свойства логарифма ( логарифм произведения, логарифм степени)

log_(a)xy=log_(a)x+log_(a)y

log_(a)x^(k)=klog_(a)x


3) В результате получить логарифмическое квадратное неравенство


[m]\frac{log_{3}9}{log_{3}(81x)}\cdot (\frac{log_{3}(27x)}{log_{3}\frac{1}{3}})^2\leq 4,5[/m]

Удобнее ввести замену переменной:

log_(3)x=t

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
восстановитель отдает электроны, тем самым степень окисления увеличивается.
A) S^(0) -> S^(+4)
Б) I^(-) -> I_(2)^(0)
В) С^(0) -> С^(+2)

ответ - 234
✎ к задаче 45897
sinx(2sinx+1) >0

__+_ (-1/2) ___ (0) _+__

sinx < -1/2 или sinx > 0

-(5π/6)+2πn < x < -(π/6)+2πn или πn < x < π+2πn , n ∈ Z

(прикреплено изображение)
✎ к задаче 45945
m^4-225c^(10)=(m^2)^2-([b]15c^5[/b])^2=(m^2-[b]15c^5[/b])(m^2+[b]15c^5[/b]) (прикреплено изображение)
✎ к задаче 45939
tg^3x+3>3tgx+tg^2x

tg^3x+3-3tgx-tg^2x>0
(tg^3x-tg^2x)+(+3-3tgx)>0
tg^2x(tgx-1)-3(tgx-1)>0
(tgx-1)(tg^2x-3)>0
(tgx-1)(tgx-sqrt(3))(tgx+sqrt(3))>0

___ (-sqrt(3)) __+__ (1) ___-__ (sqrt(3)) __+__

- sqrt(3) < tgx < 1 или tgx > sqrt(3)

[b]-(π/3)+πn <x<(π/4)+πn[/b] или [b] x> (π/3)+πn, n ∈ Z[/b]
✎ к задаче 45942
ctg^3x+2ctgx–ctg^2x-2>0
(ctg^3x-ctg^2x)+(2ctgx-2) >0
ctg^2x*(ctgx-1)+2(ctgx-1) >0
(ctgx-1)*(ctg^2x+2) >0

сtg^2x+1 > 0 при любом х, сtg^2x ≥ 0, 0+1 >0

ctgx-1 >0

ctgx>1
[b]πn <x<(π/4)+πn, n ∈ Z[/b] - это ответ.

Можно так записать (πn ;(π/4)+πn), n ∈ Z

См. рис.

(прикреплено изображение)
✎ к задаче 45941