x= ρ cos θ
y= ρ sin θ
x2+y2= ρ2
Якобиан |J|= ρ
x2+y2=π2 ⇒ ρ 2=π2 ⇒ ρ =π
x2+y2=4π2⇒ ρ 2=4π2 ⇒ ρ =2π
D:
π ≤ ρ ≤ 2π
0 ≤ θ ≤ 2π
∫ ∫ D(sin ρ )· ρ d ρ d θ = ∫ 2π0( ∫ 2ππ ρ ·sin ρ d ρ) d θ=
считаем внутренний интеграл по частям:
u= ρ dv=sin ρ d ρ
du=d ρ ; v=–cos ρ
= ∫ 2π0((– ρ cos ρ )|2ππ+ ∫2ππ cos ρ d ρ )d θ =
= ∫ 2π0( –(2π)·cos2π+π·cosπ+sin ρ |2ππ)d θ =
=∫ 2π0((–3π+0)d θ =
=–3π θ |2π0=–6π