✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 43647

УСЛОВИЕ:

Вычислить двойной интеграл по области D
∫ ∫ x^2 ydxdy, D:y=x^2, x=y^2
D

РЕШЕНИЕ ОТ sova ✪ ЛУЧШЕЕ РЕШЕНИЕ

D: 0 ≤ x ≤ 1; sqrt(x) ≤ y ≤ x^2

∫ ∫ x2 ydxdy= ∫^(1)_(0) (∫^(x^2)_(sqrt(x)) x^2dy)dx=
D

= ∫^(1)_(0)x^2*y)|(y=x^2)_(y=sqrt(x))dx=


= ∫^(1)_(0)x^2*(x^2-sqrt(x))dx=

= ∫^(1)_(0)(x^4 - x^(2,5))dx=(x^5/5)|^(1)_(0)- x^(3,5)/(3,5)|^(1)_(0)=

=(1/5)-(1/3,5)=(1/5)-(2/7)=[b]-3/35[/b]

Вопрос к решению?
Нашли ошибку?

Добавил crucianni, просмотры: ☺ 147 ⌚ 2020-01-24 10:02:56. математика 2k класс

Решения пользователей

Лучший ответ к заданию выводится как основной
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
(прикреплено изображение)
✎ к задаче 53335
(прикреплено изображение)
✎ к задаче 53334
(прикреплено изображение)
✎ к задаче 53333
У призмы два основания, в основаниях призмы лежат n-угольники. Количество вершин призмы равно количеству вершин n-угольников, лежащих в основаниях.

Количество вершин одного основания равно n. Количество вершин двух оснований равно 2n. Значит количество вершин в призме равно 2n.

2n - четное, т.к. кратно 2.


У призмы два основания, в основаниях призмы лежат n-угольники.
n-угольник имеет n сторон, они являются ребрами призмы.

n ребер в одном n-угольнике и n ребер в другом n-угольнике

Все вершины одного основания соединены ребрами с соответствующими вершинами другого основания.
Т.е n вершин соединены ребрами, значит боковых ребер тоже n штук.

Всего
n+n+n=3n.

3n кратно 3.
✎ к задаче 53332
H^2=13^2-5^2=169-25=144
H=12
✎ к задаче 53331