ЗАДАЧА 432 Построить плоскость параллельную

УСЛОВИЕ:

Построить плоскость параллельную плоскости АВС и расположенную выше её на расстоянии 30 мм.

РЕШЕНИЕ:

Построить плоскость параллельную плоскости АВС и расположенную выше её на расстоянии 30 мм.

Для решения задачи введем новую плоскость проекций П4 - горизонтально проецирующую и перпендикулярную плоскости треугольника.

Плоскость АВС проецируется на П4 в прямую линию, проведем из В4 перпендикуляр длинной 30 мм, получим точку К4 и через нее проведем проекцию плоскость (m4n4) параллельную плоскости АВС.

Плоскость параллельна другой плоскости если две прямые одной плоскости соответственно параллельны двум прямым другой плоскости ( пусть m//АВ, а n//BC).

ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик
Горизонтально-проецирующая плоскость-это плоскость, перпендикулярная горизонтальной плоскости проекций П1. Разве она может быть одновременно перпендикулярной плоскости П1 и плоскости данного произвольного треугольника АВС?
ответить
опубликовать + регистрация в один клик
Предыдущий вопрос снимаю. Так как представил возможность в пространстве! ответить
опубликовать + регистрация в один клик
Замечательно!
Но возник другой вопрос: Как определить положение горизонтально–проецирующей плоскости на плоскости П1 относительно проекции данного треугольника А1В1С1? ответить
опубликовать + регистрация в один клик
Этот вопрос тоже снялся)). Больше вопросов нет. ответить
опубликовать + регистрация в один клик
Отлично!
Показать имеющиеся вопросы (4)

ОТВЕТ:

построение

Нужна помощь?

Опубликовать

Добавил slava191 , просмотры: ☺ 5302 ⌚ 12.01.2014. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.
Увы, но свой вариант решения никто не написал... Будь первым!

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

u821511235 ✎ к задаче 27696

SOVA ✎ Пусть ширина окантовки х Тогда стороны прямоугольника с окантовкой (23+2х)*(41+2х)=2035 23*41+82х+46х+4х^2=2035 4x^2+128x-1092=0 x^2+32x-273=0 D=32^2-4*(273)=1024+1092=2116=46^2 x=(-32+46)/2=7 второй корень уравнения отрицательный и не удовл смыслу задачи О т в е т. 7 к задаче 27975

SOVA ✎ 1) По теореме Пифагора второй катет sqrt(13^2-5^2)=sqrt(144)=12 см S(осн.)=(1/2)a*b=(1/2)5*12=30 кв см S(бок)=Р(осн)*Н=(5+12+13)*8=30*8=240 кв см S(полн)=S(бок) +2S (осн)=240+2*30=300 2) H=h*sin60^(o)=4*(sqrt(3))/2)=2sqrt(3) см. рисунок. 3) Треугольник АСС_(1) - прямоугольный равнобедренный СС_(1)=АС=6 АС^2=AB^2+BC^2 AB=BC ( стороны квадрата равны) 36=2AB^2 AB^2=18 AB=3sqrt(2) S(бок)=P(осн)*Н=4*3sqrt(2)*6=72 sqrt(3) кв. см 4) Значит углы при основаниях в боковых треугольниках тоже по 60^(o) Боковые треугольники - равносторонние h( апофема)=4*sqrt(3)/2=2sqrt(3) S(полн)=S(бок) +S (осн)= 4*S(боковых треугольников)+S (квадрата)= =4*(1/2)*4*2sqrt(3)+4^2=16sqrt(3)+16 ( кв. см) к задаче 27974

SOVA ✎ Треугольник АО_(1)В- равнобедренный (ВО_(1)=АО_(1)=r=2) Значит ∠ АВО_(1)= ∠ О_(1)АВ=30^(o) ∠ BO_(1)A=120^(o) По теореме косинусов АВ^2=r^2+r^2-2*r*r*cos120^(o)=4+4-2*4*(-1/2)=12 AB=2 sqrt(3) Или высота равнобедренного треугольника, проведенная из вершины O_(1) на сторону АВ, делит АВ пополам. Поэтому (1/2) АВ=r*cos30^(o) ( все верно в 536) AB=2r*cos30^(o) Аналогично Треугольник АО_(2)В- равнобедренный (ВО_(2)=АО_(2)=R=3) ∠CАО_(2)=∠ ВAО_(1) как вертикальные Значит ∠ АСО_(2)= ∠ О_(2)АС=30^(o) ∠ СO_(2)A=120^(o) По теореме косинусов АС^2=R^2+R^2-2*R*R*cos120^(o)=9+9-2*9*(-1/2)=27 AC=3 sqrt(3) BC=BA+AC=2 sqrt(3)+3sqrt(3)=5sqrt(3) S( Δ BCO_(2))=(1/2)*BC*CO_(2)*sin30^(o)=(1/2)*5sqrt(3)*3*(1/2)=15sqrt(3)/4 О т в е т. 15 sqrt(3)/4 к задаче 27973

SOVA ✎ Сделаем замену переменной. 5^x=t > 0; 25^x=(5^2)^x=(5^x)^2=t^2 Если 5^x=t_(1) или 5^x=t_(2) t_(1) больше или равно 1 и t_(2) больше или равно 1, то данное уравнение будет иметь два неотрицательных корня. После введённой замены уравнение примет вид |2t–a|–|t+2a|=t^2. Применяем координатно–параметрический метод. Рассматриваем плоскость аОt Раскрываем знак модуля в каждой из четырех областей. 1) Подмодульные выражения обращаются в 0 при 2t–a=0 ⇒ t=a/2 при t+2a=0 ⇒ t=–2a Прямые t=a/2 и t=–2a разбивают координатную плоскость аОt на 4 области. Раскрываем знаки модуля в каждой области 1 область {2t-a больше или равно 0 {t+2a больше или равно 0 2t–a-t+2a=t^2 ⇒ a=(-1/3)(t^2-t) - зеленая парабола Вершина параболы в точке t=1/2 a=1/8. О т в е т. два неотрицательных решения 0 < t меньше или равно 1 при 0 < a меньше или равно 1/8 Обратная замена приводит к уравнениям 5^x=t_(1) или 5^(x)=t_(2), не имееющим неотрицательных решений. В первой области нет решений. 2 область {2t-a больше или равно 0 {t+2a < 0 2t–a+t+2a=t^2 ⇒ a=t^2–3t парабола оранжевого цвета, оставлена только та её часть, которая принадлежит области 2. Вершина в точке t=1,5; a=–2,25. На (-2,25;-2] Уравнение имеет два решения t от 1 до 2 Обратная замена приводит к двум уравнениям 5^x=t_(1) или 5^(x)=t_(2) Решение которых и дает неотрицательных решения х 3 область и 4 область расположены ниже оси Оа положительных значений t нет, а значит и уравнение 5^x=t не будет иметь решений Поскольку показательное уравнение 5^x=t имеет положительный корень, если t > 1, то при a∈(–2,25;–2] данное уравнение будет иметь ровно два неотрицательных корня. О т в е т. a∈(–2,25;–2] к задаче 27972