Loading [MathJax]/extensions/tex2jax.js
Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 42644 ...

Условие

7) lim x→0 x/√(1 – cos 2x)
8) lim x→0 (1 – √cos x)/x²
9) lim x→π (1 – sin (x/2))/(π – x)

математика ВУЗ 641

Решение

7.
1–cos2x=2sin2x

[m]=\lim_{x \to 0 }\frac{x}{\sqrt{2sin^2x}}=\lim_{x \to 0 }\frac{x}{|sinx|\cdot \sqrt{2}}=[/m]
[m]=\left\{\begin{matrix} -\frac{1}{\sqrt{2}} &; sinx <0 \\ \frac{1}{\sqrt{2}} &;sinx >0 \end{matrix}\right.[/m]


8.
Умножаем и числитель и знаменатель на
1+√cosx

[m]=\lim_{x \to 0 }\frac{1-cosx}{x^2\cdot (1+\sqrt{cosx})}=\lim_{x \to 0 }\frac{2sin^2\frac {x}{2}}{x^2\cdot (1+\sqrt{cosx})}=[/m]

[m]=2\lim_{x \to 0 }\frac{sin\frac {x}{2}\cdot sin\frac {x}{2}}{4\cdot \frac{x}{2}\cdot\frac{x}{2}}\cdot \lim_{x \to 0 }\frac{1}{1+\sqrt{cosx}}=\frac{2}{4}\cdot \frac{1}{1+1}=\frac{1}{4}[/m]

9.
x–π=t

x=π+t

t → 0

[m]=\lim_{t \to 0 }\frac{1-sin \frac{\pi +t}{2}}{t}=\lim_{t \to 0 }\frac{1-sin (\frac{\pi }{2}+\frac{t }{2})}{t}=\lim_{t \to 0 }\frac{1-cos\frac{t }{2}}{t}=[/m]

[m]=\lim_{t \to 0 }\frac{2sin^2\frac{t }{4}}{t}=0[/m]

Обсуждения

Написать комментарий

Меню

Присоединяйся в ВК