Loading [MathJax]/extensions/tex2jax.js
Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 42592 ...

Условие

8.∫π/6π/3▒cos3⁡x/sin2⁡x dx=
Перепишем/упростим, используя определение тригонометрических/гиперболических функций:
=∫cos(x)cot²(x)dx
Перепишем/упростим, используя определение тригонометрических/гиперболических функций:
=∫cos(x)(csc²(x)−1)dx=∫(cot(x)csc(x)−cos(x))dx
Применим линейность:=∫cot(x)csc(x)dx−∫cos(x)dx
Теперь вычисляем:∫cot(x)csc(x)dx
Это известный табличный интеграл:=−csc(x)
Теперь вычисляем:∫cos(x)dx
Это известный табличный интеграл:=sin(x)
Подставим уже вычисленные интегралы:
∫cot(x)csc(x)dx−∫cos(x)dx=−sin(x)−csc(x)
π/6π/3▒cos3⁡x/sin2⁡x dx =−sin(x)−csc(x)+C
Определенный интеграл:
π/6π/3▒x dx= 5/2–7/(2√3)
Упростим/перепишем:(7√3–15)/6
В приближении:
0.4792740578363098
ПРЕПОДАВАТЕЛЬ ПИШЕТ ;В задаче 8 непонятно, какие функции обозначены cot x, csc x.

Запишите решения с использованием математической символики, принятой в русскоязычной литературе.

ПОмогите оформить

предмет не задан 1460

Все решения

8.
π/3π/36[m]\frac{cos^{3}⁡x}{sin^{2}⁡x}[/m] dx


Cчитаем неопределённый интеграл:

∫[m]\frac{cos^{3}⁡x}{sin^{2}⁡x}[/m] dx=


так как [m]\frac{cos⁡x}{sin⁡x}=сtgx[/m], то

=∫cos(x)ctg²(x)dx=


так как

[m]сtg^2x+1=\frac{cos^{2}⁡x}{sin^{2}⁡x}+1=\frac{cos^{2}⁡x+sin^{2}x}{sin^{2}⁡x}=\frac{1}{sin^2x}[/m], то
[m]сtg^2x=\frac{1}{sin^2x}- 1[/m]

[ [m]\frac{1}{sinx}=сosecx[/m] – косеканс
и
([m]\frac{1}{cosx}=secx[/m] – секанс]


=∫cos(x)·([m]\frac{1}{sin^2x}−1)dx=∫(\frac{cosx}{sin^2x}dx[/m]–cosxdx)=


Применим линейность, т.е применяем свойство: интеграл от суммы ( разности) равен сумме (разности) интегралов:

=∫[m]\frac{cosx}{sin^2x}dx[/m]– ∫cosxdx

Теперь вычисляем
первый интеграл:∫[m]\frac{cosx}{sin^2x}[/m]dx

Это табличный интеграл:

∫ du/u2=–1/u

u=sinx; du=(sinx)`dx=cosxdx

Поэтому

∫[m]\frac{cosx}{sin^2x}dx=-\frac{1}{sinx}[/m]

Теперь вычисляем
второй интеграл :∫cos(x)dx

Это известный табличный интеграл: он равен sin(x)

Подставим уже вычисленные интегралы:
∫[m]\frac{cosx}{sin^2x}dx[/m]– ∫cosxdx=

[m]-\frac{1}{sinx}[/m]–sinx + C

Вычислен неопределенный интеграл, поэтому здесь константа С должна быть написана.

А вот в следующей строке ее быть не должно:

∫π/6π/3▒cos3⁡x/sin2⁡x dx =−sin(x)−csc(x)+C

Это неправильно.

Должно быть так:
π/3π/6[m]\frac{cos^{3}⁡x}{sin^{2}⁡x} dx=

по формуле Ньютона_Лейбница

= (-\frac{1}{sinx}-sinx[/m])|π/3π/6=

= [m]-\frac{1}{sin\frac{\pi }{3}}-sin\frac{\pi }{3}+\frac{1}{sin\frac{\pi }{6}}+sin\frac{\pi }{6}=-\frac{1}{\frac{\sqrt{3}}{2}}-\frac{\sqrt{3} }{2}+\frac{1}{\frac{1 }{2}}+\frac{1}{2}=[/m]

[m]=-\frac{2}{\sqrt{3}}-\frac{\sqrt{3} }{2}+2+\frac{1}{2}=\frac{15-7\sqrt{3}}{6}[/m] – это ответ

Да, приближенно он равен 0,47927405

Но такие решения обычно выдают калькуляторы ... интегралов.
Они–то Вас и подводят

Обсуждения

Обсуждения

Написать комментарий

Меню

Присоединяйся в ВК