✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 42313 Найти сторону основания a и боковое

УСЛОВИЕ:

Найти сторону основания a и боковое ребро b правильной четырехугольной призмы, вписанной в сферу единичного радиуса и имеющей среди всех таких призм наибольшую полную поверхность

РЕШЕНИЕ ОТ sova ✪ ЛУЧШЕЕ РЕШЕНИЕ

S_(полн)=S_(бок.)+2S_(осн)=4a*b+2*a^2

B_(1)D^2=BB^2_(1)+BD^2=BB^2_(1)+AD^2+AB^2

B_(1)D=2R_(сферы)=2

2=b^2+a^2+a^2 ⇒ b=sqrt(2-2a^2)

Тогда
S_(полн)=4a*b+2*a^2=4a*sqrt(2-2a^2)+2a^2

S_(полн) (а)=4a*sqrt(2-2a^2)+2a^2 - [i]зависит[/i] от а

Исследуем функцию на экстремум.

Пусть a=x
0 < x < 2 ( т. к сторона квадрата не превышает диаметра шара)

S(x)=4x*sqrt(2-2x^2)+2x^2

Находим производную:

S`(x)=4*sqrt(2-2x^2)+4x*(-4x)/2sqrt(2-2x^2)+4x

S`(x)=sqrt(2-2x^2)+x*(-2x)/sqrt(2-2x^2)+x

S`(x)=0

x*sqrt(2-2x^2)=4x^2-2

Возводим в квадрат:

x^2*(2-2x^2)=16x^4-16x^2+4

18x^4-18x^2+4=0

9x^4-9x^2+2=0

D=81-4*9*2=9

x_(1)=(9-3)/18=1/2; x_(2)=(9+3)/18=2/3


S(1/2)=4*(1/2)*sqrt(2-2*(1/2)^2)+2*(1/2)^2=sqrt(6)+(1/2)

S(2/3)=4*(2/3)*sqrt(2-2*(2/3)^2)+2*(2/3)^2=8*(sqrt(10)+1)/9


Cравним:

S(1/2) < S (2/3)

x=a=2/3
b^2=2-2a^2=2-2*(4/9)=10/9
b=sqrt(10)/3


О т в е т. a=2/3; b=sqrt(10)/3

Вопрос к решению?
Нашли ошибку?

Добавил eximiushero, просмотры: ☺ 207 ⌚ 2019-12-05 21:40:02. математика 1k класс

Решения пользователей

Лучший ответ к заданию выводится как основной
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
С=ε ε_(0)S/d=ε ε_(0)πr^2/d
✎ к задаче 43759
В полярной системе координат, откладывают лучи от начала О.
Эти лучи заполняют всю плоскость.

В условии задачи предлагают провести лучи
φ =0
φ =π/8
φ =2π/8=π/4
и так далее.

На каждом таком луче откладывается расстояние.

Например при φ =π/2
откладываем r=4/(2-3*0)=2

На луче откладываем расстояние только в одну сторону, т.е

r ≥ 0

4/(2-3cos φ ) >0 ⇒ 2-3cos φ >0 ⇒[b] cos φ <2/3[/b]


Вообще-то это гипербола.

Надо перейти от полярных координат к декартовым

r=sqrt(x^2+y^2)
cos φ =x/r


sqrt(x^2+y^2)=4/(2-3*x/sqrt(x^2+y^2))

упростить и получить уравнение в декартовых координатах

(прикреплено изображение)
✎ к задаче 43787
4^(x)=-2x


Строим график функции y=4^(x) и y=-2x

Из рисунка видно, что корень находится на [-0,5;0]


---------------------------------


Пусть f(x)=4^(x)+2x

(cм. приложение 2) Постановка задачи.

Если на концах отрезка [-0,5;0] функция y=f(x) имеет разные знаки, то внутри [-0,5;0] находится корень уравнения.


f(-0,5)=4^(-0,5)+2*(-0,5)<0
f(0)=4^(0)+0=1>0

[b]Корень находится [/b]на [-0,5;0]


Делим отрезок [-0,5;0]пополам

Получаем два отрезка:

[-0,5;-0,25] и [-0,25;0]

Проверяем корень на принадлежность первому отрезку или второму.

4^(-0,25)+2*(-0,25)>0

так как
4^{-0,25}=\frac{1}{4^{0,25}}=\frac{1}{\sqrt[4]{4}}=\frac{1}{\sqrt[2]{2}} ≈ 0,7считаем

-2*(-0,25)=0,5


0,7-0,5>0

Значит, корень на [-0,5;-0,25]

Далее снова делим отрезок пополам.

Получаем два отрезка:

[-0,5;-0,375] и [-0,375;-0,25]

...
(прикреплено изображение)
✎ к задаче 43786
s(t)=-(1/5)*cos5t + C

s(π/2)=2

2=(-1/5)*cos(5π/2)+C, так как cos(5π/2)=cos(2π+(π/2))=cos(π/2)=0

C=[b]2[/b]

s(t)=-(1/5)*cos5t + [b]2[/b] ⇒

s(π)=(-1/5)cos5π+2=(-1/5)*(-1)+2=2 целых(1/5)=2,2

✎ к задаче 43784
4*(x^(-4+1))/(-4+1)+6*(x^(-3+1)/(-3+1))+C

О т в е т. 4)
✎ к задаче 43785