✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 42313 Найти сторону основания a и боковое

УСЛОВИЕ:

Найти сторону основания a и боковое ребро b правильной четырехугольной призмы, вписанной в сферу единичного радиуса и имеющей среди всех таких призм наибольшую полную поверхность

РЕШЕНИЕ ОТ sova ✪ ЛУЧШЕЕ РЕШЕНИЕ

S_(полн)=S_(бок.)+2S_(осн)=4a*b+2*a^2

B_(1)D^2=BB^2_(1)+BD^2=BB^2_(1)+AD^2+AB^2

B_(1)D=2R_(сферы)=2

2=b^2+a^2+a^2 ⇒ b=sqrt(2-2a^2)

Тогда
S_(полн)=4a*b+2*a^2=4a*sqrt(2-2a^2)+2a^2

S_(полн) (а)=4a*sqrt(2-2a^2)+2a^2 - [i]зависит[/i] от а

Исследуем функцию на экстремум.

Пусть a=x
0 < x < 2 ( т. к сторона квадрата не превышает диаметра шара)

S(x)=4x*sqrt(2-2x^2)+2x^2

Находим производную:

S`(x)=4*sqrt(2-2x^2)+4x*(-4x)/2sqrt(2-2x^2)+4x

S`(x)=sqrt(2-2x^2)+x*(-2x)/sqrt(2-2x^2)+x

S`(x)=0

x*sqrt(2-2x^2)=4x^2-2

Возводим в квадрат:

x^2*(2-2x^2)=16x^4-16x^2+4

18x^4-18x^2+4=0

9x^4-9x^2+2=0

D=81-4*9*2=9

x_(1)=(9-3)/18=1/2; x_(2)=(9+3)/18=2/3


S(1/2)=4*(1/2)*sqrt(2-2*(1/2)^2)+2*(1/2)^2=sqrt(6)+(1/2)

S(2/3)=4*(2/3)*sqrt(2-2*(2/3)^2)+2*(2/3)^2=8*(sqrt(10)+1)/9


Cравним:

S(1/2) < S (2/3)

x=a=2/3
b^2=2-2a^2=2-2*(4/9)=10/9
b=sqrt(10)/3


О т в е т. a=2/3; b=sqrt(10)/3

Вопрос к решению?
Нашли ошибку?

Добавил eximiushero, просмотры: ☺ 418 ⌚ 2019-12-05 21:40:02. математика 1k класс

Решения пользователей

Лучший ответ к заданию выводится как основной
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
(прикреплено изображение)
✎ к задаче 53335
(прикреплено изображение)
✎ к задаче 53334
(прикреплено изображение)
✎ к задаче 53333
У призмы два основания, в основаниях призмы лежат n-угольники. Количество вершин призмы равно количеству вершин n-угольников, лежащих в основаниях.

Количество вершин одного основания равно n. Количество вершин двух оснований равно 2n. Значит количество вершин в призме равно 2n.

2n - четное, т.к. кратно 2.


У призмы два основания, в основаниях призмы лежат n-угольники.
n-угольник имеет n сторон, они являются ребрами призмы.

n ребер в одном n-угольнике и n ребер в другом n-угольнике

Все вершины одного основания соединены ребрами с соответствующими вершинами другого основания.
Т.е n вершин соединены ребрами, значит боковых ребер тоже n штук.

Всего
n+n+n=3n.

3n кратно 3.
✎ к задаче 53332
H^2=13^2-5^2=169-25=144
H=12
✎ к задаче 53331