✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 41799

УСЛОВИЕ:

Найти пределы функций, не пользуясь правилом Лопиталя.
1) lim 1-2x/3x-2
x → ∞

2) lim
x → 0 (sqrt( 1+x) -sqrt( 1-x))/3x

3) lim
x → 0 1-cosx/^(5x)

4) lim ^x(((x+3)/(x-2)))
x → ∞

РЕШЕНИЕ ОТ sova ✪ ЛУЧШЕЕ РЕШЕНИЕ

1) Делим и числитель и знаменатель на х:
[m]\lim_{x \to \infty }\frac{1-2x}{3x-1}=\lim_{x \to \infty }\frac{\frac{1-2x}{x}}{\frac{3x-1}{x}}=\lim_{x \to \infty }\frac{\frac{1}{x}-\frac{2x}{x}}{\frac{3x}{x}-\frac{1}{x}}=[/m]
[m]=\lim_{x \to \infty }\frac{\frac{1}{x}-2}{3-\frac{1}{x}}=\frac{0-2}{3-0}=-\frac{2}{3}[/m]


2) Умножаем и числитель и знаменатель на
(√ 1+x +√ 1–x)

[m]\lim_{x \to 0}\frac{\sqrt{1+x}-\sqrt{1-x}}{3x}=\lim_{x \to 0 }\frac{(\sqrt{1+x}-\sqrt{1-x})(\sqrt{1+x}+\sqrt{1-x})}{3x\cdot (\sqrt{1+x}+\sqrt{1-x})}=[/m]

[m]=\lim_{x \to 0}\frac{1+x-(1-x)}{3x\cdot (\sqrt{1+x}+\sqrt{1-x})}=\lim_{x \to 0}\frac{2x}{3x\cdot (\sqrt{1+x}+\sqrt{1-x})}=[/m]

[m]\lim_{x \to 0}\frac{2}{3\cdot (\sqrt{1+x}+\sqrt{1-x})}=\frac{2}{3\cdot(\sqrt{1+0}+\sqrt{1+0})}=\frac{1}{3}[/m]

3)
см. первый замечательный предел

[m]\lim_{x \to 0 }\frac{1-cox}{5x}=\frac{0}{0}=\lim_{x \to 0 }\frac{2\cdot sin^2\frac{x}{2}}{5x}= \lim_{x \to 0 }\frac{2\cdot sin\frac{x}{2}}{2\cdot \frac{x}{2}}\cdot sin\frac{x}{2}=1\cdot 0=0[/m]

4)

см. второй замечательный предел

[m]\lim_{x \to\infty}(\frac{x+3}{x-2})^{x}=\lim_{x \to\infty}(\frac{\frac{x+3}{x}}{\frac{x-2}{x}})^{x}=\lim_{x \to\infty}\frac{(1+\frac{3}{x})^{x}}{(1-\frac{2}{x})^{x}}=\frac{e^{3}}{e^{-2}}=e^{5}[/m]


Вопрос к решению?
Нашли ошибку?

Добавил vk340300196, просмотры: ☺ 199 ⌚ 2019-11-21 22:05:57. математика 1k класс

Решения пользователей

Лучший ответ к заданию выводится как основной
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
Да, верно ,так пишется, потому что есть зависимые от причастия слова :варенное (в чем?) в бульоне
Если бы не было зависимых слов, то слово писалось бы с одной буквой н
✎ к задаче 52823
Δ АВС- равнобедренный.
Проведем высоту и медиану СК.

Из Δ АКС:
sin ∠ BAC=CK/AC ⇒ СК=18
По теореме Пифагора:
АК^2=AC^2-CK^2=27^2-18^2
АК=9sqrt(5)

AB=2AK=18sqrt(5)

S_( Δ ABC)=AB*CK/2 и S_( Δ ABC)=BC*AH/2 ⇒

AB*CK=BC*AH ⇒ АН=AB*CK/BC=18sqrt(5)*18/27=12sqrt(5)

Из Δ АBH по теореме Пифагора:
ВН^2=АВ^2-АН^2=(18sqrt(5))^2-(12sqrt(5))^2=5*(18-12)*(18+12)=30^2

[b]ВН=30[/b]

ВН> BC ⇒ ∠ C - [i]тупой[/i] См. рис
(прикреплено изображение)
✎ к задаче 52815
0,1 М = 0,1 моль/л
Если в литре( 1000мл) 0,1 моль соли, значит в 100 мл в 10 раз меньше - 0,01 моль
Рассчитаем массу 0,01 моль нитрита натрия
m = n*M = 0.01 * 85 = 0.85 г
Таким образом, чтобы получить 100 мл 0,1 М раствора нитрита натрия, нужно взять 0,85 г соли и растворить ее в 100 мл воды
✎ к задаче 52808
По частям два раза

u=x^2+4x+3 ⇒ du=2x+4
dv=e^(2x)dx ⇒ v=(1/2)e^(2x)

∫ (x^2+4x+3)e^(2x) dx=(1/2)e^(2x) *(x^2+4x+3)- ∫ (1/2)e^(2x)*(2x+4)dx=

[b]=(1/2)e^(2x) *(x^2+4x+3)- ∫ e^(2x)*(x+2)dx=[/b]


u=x+2 ⇒ du=dx
dv=e^(2x)dx ⇒ v=(1/2)e^(2x)

[b]=(1/2)e^(2x) *(x^2+4x+3)- ((1/2)e^(2x) *(x+2)-∫ e^(2x)dx=[/b]


[b]=(1/2)e^(2x) *(x^2+4x+3- (1/2)x-1)+(1/2)* e^(2x)+C=[/b]

[b]=(1/2)e^(2x) *(x^2+(7/2)x+3)+C[/b]
✎ к задаче 52811
ОДЗ: x >0

log_{0,5}0,5^{1+lgx}\cdot (\frac{5^{1+lgx}}{0,5^{1+lgx}}-1)\leq lgx-1

log_{0,5}0,5^{1+lgx}+log_{0,5}((\frac{5}{0,5})^{1+lgx}-1)\leq lgx-1

1+lgx+log_{0,5}(10^{1+lgx}-1)\leq lgx-1

log_{0,5}(10x-1)\leq -2

log_{0,5}(10x-1)\leq log_{0,5}4

Логарифмическая функция убывает, поэтому

10х-1 ≥ 4

10х ≥ 5

x ≥ 0,5

Удовл ОДЗ

О т в е т. [0,5;+ ∞ )

✎ к задаче 52812