✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 41513 Даны три последовательные вершины

УСЛОВИЕ:

Даны три последовательные вершины параллелограмма А(-3;3), В(5;-1),С(5;5). Не находя координаты вершины D, найти:
1. найти уровень сторон AD
2. уровень высоты опущенной из вершины B на сторону AD
3. найти длину этой высоты
4. уравнение диагонали BD
5. угол между диагоналями параллелограмма

Добавил vk227441747, просмотры: ☺ 137 ⌚ 2019-11-13 16:29:07. математика 4k класс

Решения пользователей

РЕШЕНИЕ ОТ u821511235

Вопрос к решению?
Нашли ошибку?

РЕШЕНИЕ ОТ sova


1)
Cм. рис. 1

Точки В и С имеют одинаковую первую координату, поэтому [i]уравнение прямой[/i] ВС: [red]х=5[/red]

Прямая AD || BC и проходит через точку А, у которой первая координата равна (-3)
Значит, [i]уравнение прямой[/i] АD:[red] x=-3[/red]

2)
Cм. рис. 2

Высота ВН перпендикулярна AD и значит параллельна оси Ох.
Уравнение прямой, параллельной оси Ох и проходящей через точку В (5;-1)
y=-1

Точка Н - точка пересечения AD и BH

Значит, координаты точки H (-3;-1)

3)
[green]|BH|[/green]=[green]|x_(H)-x_(B)|[/green]=| -3 - 5|= |-8| = 8
так как это частный случай формулы
при y_(H)=y_(B)

|BH|=sqrt((x_(H)-x_(B))^2+(y_(H)-y_(B))^2)=sqrt((x_(H)-x_(B))^2+ (y_(B)-y_(B)^2))=sqrt((x_(H)-x_(B))^2+0)=sqrt((x_(H)-x_(B))^2)=|x_(H)-x_(B)|


4)
См. рис. 3

Диагонали параллелограмма в точке пересечения делятся пополам.
Координаты точки О как середины отрезка АС:
x_(O)=[m]\frac{x_{A}+x_{B}}{2}=\frac{-3+5}{2}=1[/m]
y_(O)=[m]\frac{y_{A}+y_{B}}{2}=\frac{3+5)}{2}=4[/m]

[blue]O(1; 4)[/blue]

Уравнение диагонали BD - это и уравнение прямой BO.

Составим уравнение применяя общее уравнение прямой, проходящей через две точки

B(5;-1) и О (1; 4)

[m]\frac{x-x_{O}}{x_{B}-x_{O}}=\frac{y-y_{O}}{y_{B}-y_{O}}[/m]

[m]\frac{x-1}{5-1}=\frac{y-4}{-1-4}[/m]

[m]\frac{x-1}{4}=\frac{y-4}{-5}[/m]

Пропорция, перемножаем крайние и средние члены пропорции
-5*(х-1)=4*(у-4)
-5х+5=4у-16

[b]5х+4у-21=0[/b] -[i] уравнение диагонали[/i] BD

5)
Угол между диагоналями - это меньший из углов, образованных прямыми BO и AC, значит это угол ВОС

Находим его как угол между векторами
vector{OB} и vector{OC}

сos ( ∠ vector{OB}, vector{OC})=[m]\frac{\underset{OB}{\rightarrow}\cdot\underset{OC}{\rightarrow}}{|\underset{OB}{\rightarrow}|\cdot|\underset{OC}{\rightarrow}|}[/m]

Находим координаты векторов
vector{OB}=(5-1;-1-4)=(4;-5)
vector{OC}=(5-1;5-4))=(4;1)

Находим скалярное произведение векторов vector{OB} и vector{OC}
vector{OB}*vector{OC}=4*4+(-5)*1=11
|vector{OB}|=sqrt(4^2+(-5)^2)=sqrt(41)
|vector{OC}|=sqrt(4^2+1^2)=sqrt(17)

сos ( ∠ vector{OB}, vector{OC})=[m]\frac{11}{\sqrt{41}\cdot \sqrt{17}}=\frac{11}{\sqrt{697}}=\frac{11\sqrt{697}}{697}[/m]

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
1.
Точка M - середина ВC
x_(M)=\frac{x_{B}+x_{C}}{2}
y_(M)=\frac{y_{B}+y_{C}}{2}

x_(M)=\frac{2+(-3)}{2}=-0,5
y_(M)=\frac{-3+5}{2}=1


M(-0,5;1)

Уравнение AМ, как уравнение прямой проходящей через две точки:
\frac{x-x_{A}}{x_{M}-x_{A}}=\frac{y-y_{A}}{y_{M}-y_{A}}

\frac{x-6}{-0,5-6}=\frac{y-2}{1-2}

Умножаем обе части на (-13):

2*(x-6)=13*(y-2)

[b]2х-13у+14=0[/b] - уравнение медианы AМ

2.
Каноническое уравнение эллипса
\frac{x^2}{a^2}+\frac{y^2}{b^2}=1

с^2=a^2-b^2

\frac{x^2}{49}+\frac{y^2}{24}=1

a^2=49
b^2=24

c^2=a^2-b^2=49-24=25

с=5

Эксцентриситет
ε =с/а=5/7

3.
Каноническое уравнение параболы:
y^2=2px
F(p/2;0)

y^2=4x ⇒ 2p=4 ⇒ [b]p=2[/b]

F(1;0)

Произведение угловых коэффициентов взаимно перпендикулярных прямых
k_(1)*k_(2)=-1

x-3y+1=0 запишем в виде y=\frac{1}{3}x+\frac{1}{3}

k_(1)=\frac{1}{3}

k_(2)=-3

Общий вид прямых перпендикулярных прямой x-3y+1=0

y=-3x+b

Прямая проходит через фокус параболы, т.е через точку F(1;0)

Подставляем координаты точки F:

0=-3*1+b

b=3

О т в е т. [b]y=-3x+3[/b]






(прикреплено изображение)
✎ к задаче 42440

пусть x_(o) - произвольная точка ∈[b] [i]R[/i][/b]

Функция t(x) =x+1 непрерывна в точке x_(o), т.к

lim_(x → x_(o))(x+1)=x_(o)+1=t_(o)

Сложная функция

y=sint, t=x+1 непрерывна в точке x_(o),

[b]lim_(x → x_(o))sin(x+1)[/b]=lim_(x → x_(o))sint=sint_(o)=

=sin (lim_(x → x_(o))(x+1))=[b]sin(x_(o)+1)[/b]

✎ к задаче 42430
Теорема синусов:
AC/sin ∠ B=AB/sin ∠ C

AC=10,5
✎ к задаче 42437
x`_(t)=e^(t)*cost+e^(t)*(-sint)
y`_(t)=e^(t)*sint+e^(t)*(cost)

(x`_(t))^2+(y`_(t))^2=2e^(2t)*(cos^2t+sin^2t)=2e^(2t)


L= ∫ ^(lnπ)_(0)2e^(2t)dt=∫ ^(lnπ)_(0)e^(2t)d(2t)=e^(2t)|^(lnπ)_(0)=

=e^(2lnπ)-e^(0)=e^(lnπ^2)-1=[b]π^2-1[/b]
(прикреплено изображение)
✎ к задаче 42421
f(x)=lnsinx
f`(x)=(1/sinx)*(sinx)`=cosx/sinx=ctgx



L= ∫ ^(π/2)_(π/3)sqrt(1+(ctgx)^2) dx= ∫ ^(π/2)_(π/3)sqrt(1/sin^2x) dx=

=(-ctgx)|(π/2)_(π/3)=-ctg(π/2)+ctg(π/3)=0+(1/sqrt(3))


О т в е т. (1/sqrt(3))
(прикреплено изображение)
✎ к задаче 42420