Задача 41513 Даны три последовательные вершины
УСЛОВИЕ:
1. найти уровень сторон AD
2. уровень высоты опущенной из вершины B на сторону AD
3. найти длину этой высоты
4. уравнение диагонали BD
5. угол между диагоналями параллелограмма
Добавил vk227441747, просмотры: ☺ 137 ⌚ 2019-11-13 16:29:07. математика 4k класс
Решения пользователей

РЕШЕНИЕ ОТ sova
1)
Cм. рис. 1
Точки В и С имеют одинаковую первую координату, поэтому [i]уравнение прямой[/i] ВС: [red]х=5[/red]
Прямая AD || BC и проходит через точку А, у которой первая координата равна (-3)
Значит, [i]уравнение прямой[/i] АD:[red] x=-3[/red]
2)
Cм. рис. 2
Высота ВН перпендикулярна AD и значит параллельна оси Ох.
Уравнение прямой, параллельной оси Ох и проходящей через точку В (5;-1)
y=-1
Точка Н - точка пересечения AD и BH
Значит, координаты точки H (-3;-1)
3)
[green]|BH|[/green]=[green]|x_(H)-x_(B)|[/green]=| -3 - 5|= |-8| = 8
так как это частный случай формулы
при y_(H)=y_(B)
|BH|=sqrt((x_(H)-x_(B))^2+(y_(H)-y_(B))^2)=sqrt((x_(H)-x_(B))^2+ (y_(B)-y_(B)^2))=sqrt((x_(H)-x_(B))^2+0)=sqrt((x_(H)-x_(B))^2)=|x_(H)-x_(B)|
4)
См. рис. 3
Диагонали параллелограмма в точке пересечения делятся пополам.
Координаты точки О как середины отрезка АС:
x_(O)=[m]\frac{x_{A}+x_{B}}{2}=\frac{-3+5}{2}=1[/m]
y_(O)=[m]\frac{y_{A}+y_{B}}{2}=\frac{3+5)}{2}=4[/m]
[blue]O(1; 4)[/blue]
Уравнение диагонали BD - это и уравнение прямой BO.
Составим уравнение применяя общее уравнение прямой, проходящей через две точки
B(5;-1) и О (1; 4)
[m]\frac{x-x_{O}}{x_{B}-x_{O}}=\frac{y-y_{O}}{y_{B}-y_{O}}[/m]
[m]\frac{x-1}{5-1}=\frac{y-4}{-1-4}[/m]
[m]\frac{x-1}{4}=\frac{y-4}{-5}[/m]
Пропорция, перемножаем крайние и средние члены пропорции
-5*(х-1)=4*(у-4)
-5х+5=4у-16
[b]5х+4у-21=0[/b] -[i] уравнение диагонали[/i] BD
5)
Угол между диагоналями - это меньший из углов, образованных прямыми BO и AC, значит это угол ВОС
Находим его как угол между векторами
vector{OB} и vector{OC}
сos ( ∠ vector{OB}, vector{OC})=[m]\frac{\underset{OB}{\rightarrow}\cdot\underset{OC}{\rightarrow}}{|\underset{OB}{\rightarrow}|\cdot|\underset{OC}{\rightarrow}|}[/m]
Находим координаты векторов
vector{OB}=(5-1;-1-4)=(4;-5)
vector{OC}=(5-1;5-4))=(4;1)
Находим скалярное произведение векторов vector{OB} и vector{OC}
vector{OB}*vector{OC}=4*4+(-5)*1=11
|vector{OB}|=sqrt(4^2+(-5)^2)=sqrt(41)
|vector{OC}|=sqrt(4^2+1^2)=sqrt(17)
сos ( ∠ vector{OB}, vector{OC})=[m]\frac{11}{\sqrt{41}\cdot \sqrt{17}}=\frac{11}{\sqrt{697}}=\frac{11\sqrt{697}}{697}[/m]




Написать комментарий
Точка M - середина ВC
x_(M)=\frac{x_{B}+x_{C}}{2}
y_(M)=\frac{y_{B}+y_{C}}{2}
x_(M)=\frac{2+(-3)}{2}=-0,5
y_(M)=\frac{-3+5}{2}=1
M(-0,5;1)
Уравнение AМ, как уравнение прямой проходящей через две точки:
\frac{x-x_{A}}{x_{M}-x_{A}}=\frac{y-y_{A}}{y_{M}-y_{A}}
\frac{x-6}{-0,5-6}=\frac{y-2}{1-2}
Умножаем обе части на (-13):
2*(x-6)=13*(y-2)
[b]2х-13у+14=0[/b] - уравнение медианы AМ
2.
Каноническое уравнение эллипса
\frac{x^2}{a^2}+\frac{y^2}{b^2}=1
с^2=a^2-b^2
\frac{x^2}{49}+\frac{y^2}{24}=1
a^2=49
b^2=24
c^2=a^2-b^2=49-24=25
с=5
Эксцентриситет
ε =с/а=5/7
3.
Каноническое уравнение параболы:
y^2=2px
F(p/2;0)
y^2=4x ⇒ 2p=4 ⇒ [b]p=2[/b]
F(1;0)
Произведение угловых коэффициентов взаимно перпендикулярных прямых
k_(1)*k_(2)=-1
x-3y+1=0 запишем в виде y=\frac{1}{3}x+\frac{1}{3}
k_(1)=\frac{1}{3}
k_(2)=-3
Общий вид прямых перпендикулярных прямой x-3y+1=0
y=-3x+b
Прямая проходит через фокус параболы, т.е через точку F(1;0)
Подставляем координаты точки F:
0=-3*1+b
b=3
О т в е т. [b]y=-3x+3[/b]
пусть x_(o) - произвольная точка ∈[b] [i]R[/i][/b]
Функция t(x) =x+1 непрерывна в точке x_(o), т.к
lim_(x → x_(o))(x+1)=x_(o)+1=t_(o)
Сложная функция
y=sint, t=x+1 непрерывна в точке x_(o),
[b]lim_(x → x_(o))sin(x+1)[/b]=lim_(x → x_(o))sint=sint_(o)=
=sin (lim_(x → x_(o))(x+1))=[b]sin(x_(o)+1)[/b]
y`_(t)=e^(t)*sint+e^(t)*(cost)
(x`_(t))^2+(y`_(t))^2=2e^(2t)*(cos^2t+sin^2t)=2e^(2t)
L= ∫ ^(lnπ)_(0)2e^(2t)dt=∫ ^(lnπ)_(0)e^(2t)d(2t)=e^(2t)|^(lnπ)_(0)=
=e^(2lnπ)-e^(0)=e^(lnπ^2)-1=[b]π^2-1[/b]
f`(x)=(1/sinx)*(sinx)`=cosx/sinx=ctgx
L= ∫ ^(π/2)_(π/3)sqrt(1+(ctgx)^2) dx= ∫ ^(π/2)_(π/3)sqrt(1/sin^2x) dx=
=(-ctgx)|(π/2)_(π/3)=-ctg(π/2)+ctg(π/3)=0+(1/sqrt(3))
О т в е т. (1/sqrt(3))