Интеграл x2cosx dx
Интеграл dx/sin x
Интеграл sin3 x / cosx –3 dx
Интеграл cos3 x / sin4 x
∫ x2cosxdx
по частям:
u=x2
dv=cosxdx
du=2xdx
v=sinx
∫ x2cosxdx=x2·sinx– ∫ sinx·(2x)dx=x2·sinx–2∫ x·sinxdx=
еще раз по частям:
u=x
dv=sinxdx
du=dx
v=–cosx
=x2·sinx–2·(x·(–cosx) – ∫ (–cosx)dx)=
=x2·sinx +2xcosx–2 ∫cosxdx=
=x2sinx+2xcosx–2sinx + C
2.
[m]\int \frac{dx}{sinx}=\int \frac{sin^2\frac{x}{2}+cos^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}dx=\int \frac{sin^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}dx+\int \frac{cos^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}dx=[/m]
[m]=\int \frac{sin\frac{x}{2}}{2cos\frac{x}{2}}dx+\int \frac{cos\frac{x}{2}}{2sin\frac{x}{2}}dx=[/m]
[m]=-ln|cos\frac{x}{2}|+ln|sin\frac{x}{2}|+C=ln|tg\frac{x}{2}|+C[/m]
3.
Замена
cosx–3=t
cosx=t+3
d(cosx)=d(t+3)
–sinxdx=dt ⇒ sinxdx=–dt
cos2x=(t+3)2
sin2x=1–cos2x=1–(t+3)2=(1–t–3)(1+t+3)=(t+4)·(–t–2)=
=–(t+4)(t+2)=–(t2+6t+8)
[m]\int \frac{sin^3x}{cosx-3}dx=\int \frac{sinx\cdot sin^2x}{cosx-3}dx=\int \frac{t^2+6t+8}{t}dt=[/m]
= ∫ (t+6+[m]\frac{8}{t}[/m])dt=
=[m]\frac{t^2}{2}[/m]+6t+8ln|t|+C=
обратный переход:
=[m]\frac{(cosx-3)^2}{2}[/m]+6·(cosx–3)+8ln|cosx–3|+C
4.
[m]\int \frac{cos^3x}{sin^4x}dx=\int \frac{cosx\cdot cos^2x}{sin^4x}dx=[/m]
[m]=\int \frac{cosx\cdot (1-sin^2x)}{sin^4x}dx=[/m]
[m]=\int \frac{1}{sin^4x}cosdx-\int \frac{sin^2x}{sin^4x}(cosxdx)=[/m]
[m]=\int \frac{d(sinx)}{sin^4x}-\int \frac{d(sinx)}{sin^2x}=[/m]
[m]=\int \frac{dt}{t^4}-\int \frac{du}{u^2}=[/m]
[m]=-\frac{1}{3sin^3x}+\frac{1}{sinx} + C[/m]