Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 40935 ...

Условие

B) ∫ dx / ( ( 2x – 1 )( x2 – 2x +17 ) ) ;

математика ВУЗ 548

Решение

Раскладываем подынтегральную дробь на простейшие:

[m]\frac{1}{(2х-1)(x^2-2x+17)}= \frac{A}{2х-1} + \frac{Mx+N}{x^2-2x+17}[/m]

1=A·(x2–2x+17)+(Mx+N)·(2x–1)

1=(A+2M)x2+(–2A–M+2N)x+17A–N

Два многочлена равны, если равны коэффициенты при одинаковых степенях переменной:

1=0·x2+0·x+1

A+2M=0 ⇒ A=2M
–2A–M+2N=0 ⇒ –2·(2M)–M+2·(34M–1)=0
17A–N=1 ⇒ N=17A–1=17·2M–1=34M–1

63M=1 ⇒ M=[m]\frac{1}{63}[/m]

A=[m]\frac{2}{63}[/m]

N=[m]\frac{-29}{63}[/m]


∫ [m]\frac{1}{(2х-1)(x^2-2x+17)}dx[/m]=[m]\frac{2}{63}[/m] ∫ [m]\frac{dx}{2x-1}[/m] +[m]\frac{1}{63}[/m]∫[m] \frac{x-29}{x^2-2x+17}dx[/m]=


=[m]\frac{2}{63}\cdot \frac{1}{2}∫ \frac{d(2x-1)}{2x-1}[/m]+[m]\frac{1}{63}∫ \frac{x-29}{(x-1)^2+4^2}dx[/m]=


=[m]\frac{1}{63}ln|2x-1|[/m]+[m]\frac{1}{63}[/m]∫[m] \frac{t-28}{t^2+4^2}dt[/m]=

[m]=\frac{1}{63}ln|2x-1|+\frac{1}{63}∫ \frac{t}{t^2+4^2}dt-\frac{28}{63}∫ \frac{1}{t^2+4^2}dt[/m]=

=[m]\frac{1}{63}ln|2x-1|[/m]+[m]\frac{1}{126}ln|t^2+4^2|-\frac{7}{63}arctg\frac{t}{4}+C=[/m]

[m]\frac{1}{63}ln|2x-1|[/m]+[m]\frac{1}{126}ln|x^2-2x+17|-\frac{1}{9}arctg\frac{x-1}{4}+C[/m]


Обсуждения

Написать комментарий

Меню

Присоединяйся в ВК