✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 40721

УСЛОВИЕ:

Решите методом интервалов

(2x^2+9x+7)/log3(x^2+6x+9) ≥ 0

РЕШЕНИЕ ОТ sova ✪ ЛУЧШЕЕ РЕШЕНИЕ

Области существования выражения, стоящего под знаком логарифма: x^2+6x+9 >0 ⇒ (x+3)^2 >0 ⇒ x ≠ 3

Находим нули числителя:
2x^2+9x+7=0
D=81-4*2*7=81-56=25
x_(1)= - 3,5; x_(2)= -1


Отмечаем их на области сплошным закрашенным кружком

Находим нули знаменателя:

log_(3)(x^2+6x+9)=0

x^2+6x+9=3^(0)
x^2+6x+8=0
D=36-32=4
x_(3)=-4; x_(4)=-2

Отмечаем пустым, не заполненным кружком.

Расставляем знаки:
Числитель неотрицателен на (- ∞ ;-3,5] U [-1;+ ∞ )

Знаменатель положителен на (- ∞ ;-4) U (-2;+ ∞ )

Дробь положительна, когда числитель и знаменатель имеют одинаковые знаки( оба положительны или оба отрицательны)

_+_ (-4)_-_ [-3,5] _+_ (-3) __+__ (-2) __-__ [-1] __+__

О т в е т. (- ∞ ;-4)U[3,5;-3) U(-3;2)U[-1;+ ∞ )

Вопрос к решению?
Нашли ошибку?

Добавил vk288952222, просмотры: ☺ 1450 ⌚ 2019-10-18 18:11:44. математика 10-11 класс

Решения пользователей

Лучший ответ к заданию выводится как основной
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
По теореме синуса:

a/sin ∠ A= 2R ⇒ [b]R=a/(2*sin ∠ A)[/b]


(прикреплено изображение)
✎ к задаче 52116
(прикреплено изображение)
✎ к задаче 52120
В основании пирамиды правильный шестиугольник. Сторона [b]a[/b] такого шестиугольника равна радиусу описанной окружности.

По условию дан диаметр, значит, [b]а[/b] =d/2

S_(шестиугольника)=3a^2sqrt(3)/2=[b]3d^2sqrt(3)/8[/b]

Высота пирамиды по теореме Пифагора:
H^2=L^2-a^2=L^2-(d/2)^2
H=[blue]sqrt(L^2-(d/2)^2)[/blue]

Апофема пирамиды по теореме Пифагора:
h^2=L^2-(a/2)^2=L^2-(d/4)^2

h=sqrt(L^2-(d/4)^2)

Подставляем в формулы:

V_(пирамиды)=(1/3)*S_(осн)*H=a^2*H*sqrt(3)/2=sqrt(3)/8)*d^2*[blue]sqrt(L^2-(d/2)^2)[/blue]

S_(бок)=(1/2)*P_(осн)*h==3a*h=3*(d/2)*sqrt(L^2-(d/4)^2)=

=(3/2)*d*sqrt(L^2-(d/4)^2)
(прикреплено изображение)
✎ к задаче 52115
Находим точку пересечения прямых:
{2x–5y–1=0
{x+4y–7=0 ( умножаем на (-2))

{2x–5y–1=0
{-2х-8y+14=0

Складываем: -13y+13=0 ⇒ y=1; x=7-4y=7-4=3

С(3;1)

Находим координаты точки М, делящей отрезок АВ в указанном отношении ( cм формулы в приложении)

Не указано, что считая от какой вершины 2:3
Считаю, что от А, т. е

AM:MB=2:3

[b]a) λ =\frac{2}{3}[/b]
x_(M)=\frac{x_{A}+\lambda x_{B}}{1+\lambda }=\frac{4+\frac{2}{3}\cdot(-1)}{1+\frac{2}{3}}=2
y_(M)=\frac{y_{A}+\lambda y_{B}}{1+\lambda }=\frac{-3+\frac{2}{3}\cdot 2}{1+\frac{2}{3}}=-1

M(2;-1)

Составляем уравнение прямой СМ, как прямой, проходящей через две точки
y=kx+b

C(3;1) ⇒ 1=k*3+b
M(2;-1) ⇒ -1=k*2+b

k=2
b=1-3k=-5


[b]y=2x-5- О т в е т. [/b]
(прикреплено изображение)
✎ к задаче 52111
a11=1
✎ к задаче 52121