✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 40714 B3 не проходили, но задали, как делать я

УСЛОВИЕ:

B3 не проходили, но задали, как делать я не знаю я помогите

Добавил vk252862320, просмотры: ☺ 59 ⌚ 2019-10-18 15:42:53. предмет не задан класс не задан класс

Решения пользователей

РЕШЕНИЕ ОТ sova

В прямоугольном треугольнике катет против угла в 30 градусов
равен половине гипотенузы.
Значит легко найти
a=[m]2\sqrt[4]{3}[/m]

H=[m]4\sqrt[4]{3}cos 30^{o}=2\sqrt[4]{3}\sqrt{3}[/m]

S_(осн)=[m]a^2\frac{\sqrt{3}}{4}=3[/m]

S_(бок)=3a*H=3*[m]2\sqrt[4]{3}[/m]*[m]2\sqrt[4]{3}\sqrt{3}[/m]=36

S_(полн)=S_(бок)+2S_(осн)=36+6=[b]42[/b]

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
По формуле Тейлора с остаточным членов в форме Пеано:

sinx=x-(x^3/3!)+o(x^4)
tgx=x+(x^3/3) +о(x^4)

\lim_{x \to 0 }\frac{x-sinx}{x-tgx}=\lim_{x \to 0 }\frac{x-(x-\frac{x^3}{3!}+o(x^4))}{x-(x+\frac{x^3}{3}+o(x^4))}=\lim_{x \to 0 }\frac{\frac{x^3}{3!}+o(x^4))}{-\frac{x^3}{3}-o(x^4))}=\frac{\frac{1}{3!}+0}{-\frac{1}{3}+0}=-\frac{1}{2}

2 способ Правило Лопиталя

\lim_{x \to 0 }\frac{x-sinx}{x-tgx}=\lim_{x \to 0 }\frac{(x-sinx)`}{(x-tgx)`}=\lim_{x \to 0 }\frac{1-cosx}{1-\frac{1}{cos^2x}}=\lim_{x \to 0 }\frac{1-cosx}{\frac{cos^2x-1}{cos^2x}}=

=\lim_{x \to 0 }\frac{-1\cdot cos^2x}{cosx+1}=-\frac{1}{2}

(прикреплено изображение)
✎ к задаче 41610
При x → + ∞
(2)^(+ ∞ )=+ ∞

При x →- ∞
(2)^(- ∞ )=0
✎ к задаче 41609
(х-8)-2=8,
х-8=8+2,
х-8=10,
х=10+8,
х=18.
Ответ: 18.
✎ к задаче 41608
x-2=8+8
x=16+2
X=18
✎ к задаче 41608
Найдем координаты точки пересечения биссектрисы и медианы:
{x–4y+10=0
{6x+10y–59=0

Умножаем первое уравнение на (-6)
{-6x+24y-60=0
{6x+10y–59=0
Складываем
34у=119
y=3,5
x=4y-10=4*3,5-10=4

точка имеет координаты (4;3,5) Обозначим ее[b] К ( 4;3,5) [/b]


Составим уравнение прямой AК, как прямой проходящей через две точки:

\frac{x-x_{A}}{x_{К}-x_{A}}=\frac{y-y_{A}}{y_{К}-y_{A}}

\frac{x-3}{4-3}=\frac{y+1}{3,5+1}

[b]9x-2y-29=0 [/b] - уравнение [b]прямой АК[/b]

...
(прикреплено изображение)
✎ к задаче 41599