✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 4009 Какова длина (в метрах) лестницы,

УСЛОВИЕ:

Какова длина (в метрах) лестницы, которую прислонили к дереву, если верхний её конец находится на высоте 2,4 м над землёй, а нижний отстоит от ствола дерева на 0,7 м?

РЕШЕНИЕ:

Воспользуемся теоремой Пифагора.
A^2 = B^2+C^2 A - длина лестницы.
A^2 = 0,7^2+2,4^2
A = sqrt(0,49+5.76)
A = sqrt(6,25)
A = 2,5

Вопрос к решению?
Нашли ошибку?
Показать имеющиеся вопросы (1)

ОТВЕТ:

2,5

Добавил Anton, просмотры: ☺ 5550 ⌚ 13.10.2015. математика 8-9 класс

Решения пользователей

Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
По формуле Тейлора с остаточным членов в форме Пеано:

sinx=x-(x^3/3!)+o(x^4)
tgx=x+(x^3/3) +о(x^4)

\lim_{x \to 0 }\frac{x-sinx}{x-tgx}=\lim_{x \to 0 }\frac{x-(x-\frac{x^3}{3!}+o(x^4))}{x-(x+\frac{x^3}{3}+o(x^4))}=\lim_{x \to 0 }\frac{\frac{x^3}{3!}+o(x^4))}{-\frac{x^3}{3}-o(x^4))}=\frac{\frac{1}{3!}+0}{-\frac{1}{3}+0}=-\frac{1}{2}

2 способ Правило Лопиталя

\lim_{x \to 0 }\frac{x-sinx}{x-tgx}=\lim_{x \to 0 }\frac{(x-sinx)`}{(x-tgx)`}=\lim_{x \to 0 }\frac{1-cosx}{1-\frac{1}{cos^2x}}=\lim_{x \to 0 }\frac{1-cosx}{\frac{cos^2x-1}{cos^2x}}=

=\lim_{x \to 0 }\frac{-1\cdot cos^2x}{cosx+1}=-\frac{1}{2}

(прикреплено изображение)
✎ к задаче 41610
При x → + ∞
(2)^(+ ∞ )=+ ∞

При x →- ∞
(2)^(- ∞ )=0
✎ к задаче 41609
(х-8)-2=8,
х-8=8+2,
х-8=10,
х=10+8,
х=18.
Ответ: 18.
✎ к задаче 41608
x-2=8+8
x=16+2
X=18
✎ к задаче 41608
Найдем координаты точки пересечения биссектрисы и медианы:
{x–4y+10=0
{6x+10y–59=0

Умножаем первое уравнение на (-6)
{-6x+24y-60=0
{6x+10y–59=0
Складываем
34у=119
y=3,5
x=4y-10=4*3,5-10=4

точка имеет координаты (4;3,5) Обозначим ее[b] К ( 4;3,5) [/b]


Составим уравнение прямой AК, как прямой проходящей через две точки:

\frac{x-x_{A}}{x_{К}-x_{A}}=\frac{y-y_{A}}{y_{К}-y_{A}}

\frac{x-3}{4-3}=\frac{y+1}{3,5+1}

[b]9x-2y-29=0 [/b] - уравнение [b]прямой АК[/b]

...
(прикреплено изображение)
✎ к задаче 41599