∫ cos² 8x dx
∫ tg² x dx
∫ (4x+1)/(x–5) dx
[m]sin^2x=\frac{1-cos2x}{2}[/m]
[m]\int sin^23xdx=\int \frac{1-cos6x}{2}dx=\frac{1}{2}\int(1- cos6x)dx=[/m]
[m]=\frac{1}{2}\int dx-\frac{1}{2}\int cos6x dx=\frac{1}{2}x-\frac{1}{12}\int cos6x d(6x)=[/m]
Разделили на 6( получили [m]\frac{1}{12}[/m] )
и умножили на 6
чтобы иметь
d(6x)=(6x)`dx=6dx
[m]=\frac{1}{2}x-\frac{1}{12}sin6x+C[/m]
2.
[m]cos^2x=\frac{1+cos2x}{2}[/m]
[m]\int cos^28xdx=\int \frac{1+cos16x}{2}dx=\frac{1}{2}\int(1+ cos16x)dx=[/m]
[m]=\frac{1}{2}\int dx+\frac{1}{2}\int cos16x dx=\frac{1}{2}x+\frac{1}{32}\int cos16x d(16x)=[/m]
Разделили на 16( получили [m]\frac{1}{32}[/m] )
и умножили на 16
чтобы иметь:
d(16x)=(16x)`dx=16dx
[m]=\frac{1}{2}x+\frac{1}{32}sin16x+C[/m]
3.
[m]tg^2x=\frac{sin^2x}{cos^2x}=\frac{1-cos^2x}{cos^2x}=\frac{1}{cos^2x}-1[/m]
[m]\int tg^2x=\int( \frac{1}{cos^2x}-1)dx=\int \frac{1}{cos^2x}dx-\int dx=tgx-x+C[/m]
4.
[m]\int \frac{4x+1}{x-5}dx=\int \frac{4(x-5)+21}{x-5}dx=\int \frac{4(x-5)}{x-5}dx+\int \frac{21}{x-5}dx=[/m]
[m]=4\int dx+\int \frac{21d(x-5)}{x-5}=4x+21\cdot ln|x-5|+C[/m]
d(x–5)=(x–5)`dx=dx