∫ (3 tg x – 2 ctg x )2 dx
[m]\int \frac{sin2x}{cosx}dx=\int \frac{2\cdot sinx\cdot cosx}
{cosx}dx=2\int sinxdx=2\cdot(-cosx)+C=[/m]
=[m]-2cosx+C[/m]
(3tgx–2cstgx)2=(3tgx)2–2·3tgx·2ctgx+(2ctgx)2=9tg2x–12+4ctg2x=
[m]=9\cdot\frac{sin^2x}{cos^2x}-12+4\cdot\frac{cos^2x}{sin^2x}=9\cdot\frac{1-cos^2x}{cos^2x}-12+4\cdot\frac{1-sin^2x}{sin^2x}=[/m]
[m]=9\cdot\frac{1}{cos^2x}-9-12+4\cdot\frac{1}{sin^2x}-4=9\cdot\frac{1}{cos^2x}+4\cdot\frac{1}{sin^2x}-25=[/m]
Поэтому
[m]\int (3tgx-2ctgx)^2dx=\int (9\cdot\frac{1}{cos^2x}+4\cdot\frac{1}{sin^2x}-25)dx=[/m]
[m]=9tgx-4ctgx-25x+C[/m]