✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 392 Напишите уравнение касательной к графику

УСЛОВИЕ:

Напишите уравнение касательной к графику функции y=0,5x^2–3x+1, проходящей под углом 45° к прямой y=0.

РЕШЕНИЕ:

Из условия f '(a) = tg 45° найдем a: a – 3 = 1 ^ a = 4.

1. a = 4 – абсцисса точки касания.
2. f(4) = 8 – 12 + 1 = – 3.
3. f '(4) = 4 – 3 = 1.
4. y = – 3 + 1(x – 4).

y = x – 7 – уравнение касательной.

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

y = x – 7

Добавил slava191, просмотры: ☺ 2034 ⌚ 10.01.2014. математика 10-11 класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!
Увы, но свой вариант решения никто не написал... Будь первым!

Написать комментарий

Последние решения
из второй прямой делаем подстановку у=3х-7, подставляем в первую, найдем точку пересечения х=-26/7, у-127/7.
искомая прямая перпендикулярна у=2х, значит она имеет вид у=-1/2х+с (коэффициенты при умножении должны давать (-1), подставляем точку пересечения, находим с= -20, те искомая прямаю у=-1/2х-20
[удалить]
✎ к задаче 36058
у=-х/3+2/3 или, что то же самое х+3у-2=0 [удалить]
✎ к задаче 36057
Решение верно. Знаменатель равен ( sqrt(х)-2) и он сокращается целиком. Последняя двойка вычитается из дроби. [удалить]
✎ к задаче 11958
(прикреплено изображение) [удалить]
✎ к задаче 36043
(прикреплено изображение) [удалить]
✎ к задаче 36053