X+Y-2+(1-X)Y'=0
y`+(1/(1-x))*y=(2-x)/(1-x)
y=u*v
y`=u`*v+u*v`
u`*v+u*v`+(1/(1-x))*u*v=(2-x)/(1-x)
u`*v+u*(v`+(1/(1-x))*v)=(2-x)/(1-x)
{v`+(1/(1-x))*v=0⇒ dv/v=dx/(x-1) ⇒ ∫ dv/v= ∫ dx/(x-1) ⇒ln|v|=ln|x-1|
{u`*v=(2-x)/(1-x) ⇒u`*(x-1)=(2-x)/(1-x)
⇒ u= ∫ (x-2)dx/(x-1)^2= ∫ (x-1)dx/(x-1)^2- ∫dx/(x-1)^2=
= ∫ (dx/(x-1)- ∫dx/(x-1)^2=ln|x-1|+ 1/(x-1) + C
y=u*v=(ln(x-1)+ 1/(x-1) + C)*(x-1)=(x-1)ln(x-1)+C*(x-1) + 1 - о т в е т.