1. ∑ (8 / (n² + 4n + 3)), n=1 до ∞
n2+4n+3=(n+1)(n+3)
тогда
8/(n2+4n+3)= A/(n+1)+ B/(n+3)
8=(A+B)n+(3A+B)
A+B=0
3A+B=8
2A=8
A=4
B=–4
Sn= ∑ n1(4/(k+1) – 4/(k+3))=
=(4/2) – (4/4)+
+(4/3) – ( 4/5)+
+(4/4) – (4/6)+
+(4/5) – (4/7)+
...
+4/(n–1) – 4/(n+1)+
+(4/n) – 4/(n+2) +
+4/(n+1) – 4/(n+3)
Sn=(4/2) + (4/3) + ... – 4/(n+2) – 4/(n+3)
=(10/3)+ ... – 4/(n+2) – 4/(n+3)
По определению:
S=limn → ∞ Sn=10/3