✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 38120 1) Даны векторы а{1; —3; —1} и b{—1; 2;

УСЛОВИЕ:

1) Даны векторы а{1; —3; —1} и b{—1; 2; 0}. Найдите координаты вектора с=a+2b
...

Добавил vk304668233, просмотры: ☺ 69 ⌚ 2019-06-13 08:19:31. математика 1k класс

Решения пользователей

РЕШЕНИЕ ОТ sova

1.
vector{a}=(1;-3;-1)
vector{b}=(-1;2;0)
2*vector{b}=(-2;4;0)

vector{c}=vector{a}+2*vector{b}=(1+2*(-1);-3+2*2;-1+2*0)= [b](-1;1;-1)[/b]


2.
vector{a}=(2;-4;-6)
vector{b}=(-9;-3;6)
vector{c}=(3;0;-1)

vector{p}=vector{a}-(1/3)*vector{b}+2*vector{c}=
(2-(1/3)*(-9)+2*3; 4-(1/3)*(-3)+0;-6-(1/3)*6+(-1))= [b](11;5;-9)[/b]
3.
vector{2a}=(2;-4;0)
vector{3b}=(-6;0;12)
vector{2a}-vector{3b}=(2-(-6);-4-0;0-12)=(8;-4;-12)

Векторы vector{2a}-vector{3b} и vector{m} коллинеарны, значит их координаты пропорциональны:
8:m=-4:8=-12:n

из пропорции
8:m=-4:8
-4m=64
[b]m=-16[/b]

из пропорции
-4:8=-12:n
-4n=-96
[b]n=24[/b]

4.

По определению скалярное произведение двух векторов равно произведению длин этих векторов на косинус угла между ними

vector{a}*vector{b}=|vector{a}| * |vector{b}| * cos ∠ (vector{a},vector{b})

vector{a}*vector{b}=9*16*cos135 ° =9*16*(-sqrt(2)/2)= [b]-72sqrt*(2)[/b]

5.
vector{a}=(4;-2;3)
vector{b}=(-1;-2;5)

Cкалярное произведение двух векторов, заданных своими координатами равно сумме произведений одноименных координат

vector{a}*vector{b}=8*(-1)+(-2)*(-2)+3*5= [b]11[/b]

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
(прикреплено изображение) [удалить]
✎ к задаче 38630
(прикреплено изображение) [удалить]
✎ к задаче 38625
(прикреплено изображение) [удалить]
✎ к задаче 38626
(прикреплено изображение) [удалить]
✎ к задаче 38627

У меня есть ВСЕ решения на КАЖДОЕ 10 задание в профиле. Готовьтесь вместе со мной!)

Кому интересно - пишите мне в вк: https://vk.com/id292581225
(прикреплено изображение) [удалить]
✎ к задаче 17045