y=x2–3 и y=2x–x2
x2–3=2x–x2
2x2–2x–3=0
D=4–4·2·(–3)=28
x1=(2–2√7)/4=(1–sqrtz(7))/2; х2=(1+√7)/2
∫ ∫ D(x+2y)dxdy= ∫ x2x1dx ∫2x–x2x2–3 (x+2y)dy=
= ∫ x2x1 (xy+y2)|y=2x–x2y=x2–3dx=
= ∫ x2x1(x·(2x–x2)–x·(x2–3) +(2x–x2)2/2 – (x2–3)2/2)dx=
= ∫ x2x1 (2x2–x3–x3+3x+2x–2x3+(x4/2) – (x4/2)+3x2–(9/2))dx=
= ∫ x2x1 (5x2–4x3+5x–(9/2))dx=
=(5(x3/3)–4(x4/4)+(5x2/2)–(9/2)x)|x2x1=
где x1=(1–√7)/2
x2=(1+√7)/2