1) ∫₀¹ 22x–3 dx
2) ∫₋₁¹ (6–x)² dx
3) ∫3ππ/2 sin(x/3) dx
Табличный интеграл
∫ 2udu=2u/ln2 + C
u=2x–3
du=2dx
d(2x–3)=2dx
dx=(1/2)d(2x–3)
∫ 1022x–3dx=(1/2) ∫ 1022x–3d(2x–3)=
= (1/2)·(22x–3/ln2)|10=(1/2)(2–1/ln2)–(1/2)2–3/ln2=
= 3/(16ln2)
2)
Табличный интеграл
∫ u2du=u3/3 + C
u=(6–x)
du= – dx
d(6–x)=–dx
dx=–d(6–x)
∫ 1–1(6–x)2dx=– ∫ 1–1(6–x)2d(6–x)=
= – ((6–x)3/3)|1–1=–(53/3)+(73/3)=(73–53)/3=...
3)
Табличный интеграл
∫ sinu du=–cosu + C
u=(x/3)
du= (1/3) dx
d(x/3)=(1/3)dx
dx=3d(x/3)
∫ 3ππ/2 sin(x/3)dx=3 ∫ 3ππ/2 sin(x/3)d(x/3)=
=–3cos(x/3) | 3ππ/2= –3· cos(π)+3cos(π/6)=–3·(–1)+3·(1/2)=4,5