✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 37899 8. Докажите тождество:

УСЛОВИЕ:

8. Докажите тождество: sin^2a+ctg^2a+cos^2a = 1/sin^2a

9. Вычислите sin(-660)+cos 810

10. Постройте график y = sin4x+2

Добавил vk40624507, просмотры: ☺ 185 ⌚ 2019-06-03 17:51:54. математика 10-11 класс

Решения пользователей

РЕШЕНИЕ ОТ sova

8.
sin^2 α +cos^2 α =1

sin^2 α +ctg^2 α +cos^2 α =(sin^2 α +cos^2 α )+ctg^2 α =

=1+(cos^2 α /sin^2 α )=(sin^2 α +cos^2 α )/sin^2 α=1/sin^2 α

9.
Период синуса и косинуса 360°
360° *n, n∈Z
так же являются периодами фнкций


sin(-660 ° )=sin(-720 °+60 °)=sin60 ° = sqrt(3)/2

cos810 ° =cos(720 ° +90 ° )=cos90 ° =0

О т в е т. ( sqrt(3)/2)+0= sqrt(3)/2

10
T=360 ° /4 - период функции y=sin4x

у=sin4x +2 получаем из графика y=sin4x
параллельным переносом на 2 единицы вверх вдоль оси Оу.

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
1.
Какие значения принимает Х?
0; 1; 2

Значит фактически надо решить три задачи.
1) При двух бросках попаданий 0
Значит оба раза не попал.
Вероятность попадания 0,3
промаха 1-0,3=0,7

p_(o)=0,7*0,7=0,49

2)При двух бросках попаданий одно
Первый раз попадание, второй промах или первый раз промах, второй попадание

p_(1)=0,3*0,7+0,7*0,3=0,42

3) При двух бросках попаданий два

p_(2)=0,3*0,3=0,09

Закон распределения дискретной случайной величины - таблица

в верхней строке значения

___0 ___ 1 ___ 2

в нижней соответствующие вероятности.
_0,49 _ 0,42 _ 0,09

Cумма вероятностей в нижней строке должна быть равна 1
Если это так, то закон составлен верно.


Функция распределения дискретной случайно величины - ступенчатая линия.

При x ≤ 0
F(x)=0
При 0 < x ≤ 1
F(x)=0,49
При 1 < x ≤ 2
F(x)=0,49+0,42=0,91
При x > 2
F(x)=0,49+0,42+0,09=1

p(1< X < 2)=F(2)-F(1)=0,91-0,49=0,42

2.
а можно найти из свойства плотности вероятности:
[red] ∫ ^(+ ∞ )_(- ∞ )f(x)dx=1[/red]
✎ к задаче 42363
cos α =(r_(2)-r_(1))[i]/l[/i]

По условию:
π(r_(1)+r_(2))*[i]l[/i]=2*4πR^2

(r_(1)+r_(2))*[i]l[/i]=8*R^2 ⇒[i] l[/i]=8R^2/(r_(1)+r_(2))

cos α =(r_(2)-r_(1))[i]/l[/i]=(r_(2)-r_(1))(r_(1)+r_(2))/8R^2=

=(r^2_(2)-r^2_(1))/8R^2

Осталось выразить числитель через R^2, используя тот факт, что осевое сечение конуса - равнобедренная трапеция
(прикреплено изображение)
✎ к задаче 42350
Расстояние между параллельными прямыми одно и то же.

По теореме Пифагора
с одной стороны:
d^2=x^2-a^2

C другой стороны:
d^2=(c-x)^2-b^2

Приравниваем правые части

x^2-a^2=(c-x)^2-b^2
x^2-a^2=c^2-2cx+x^2-b^2

2cx=c^2-b^2+a^2

x=(c^2+a^2-b^2)/2c


c-x=c - ((c^2+a^2-b^2)/2c)=(2c^2-c^2-a^2+b^2)/2c=(c^2+b^2-a^2)/2c


О т в е т. (c^2+a^2-b^2)/2c и (c^2+b^2-a^2)/2c
(прикреплено изображение)
✎ к задаче 42349
В треугольниках ADC и ВEC:
1) ∠ СBE= ∠ CAD по условию
2) АС=ВС по условию
3) ∠ С - общий

Треугольники равны по стороне и двум прилежащим к ней углам
(прикреплено изображение)
✎ к задаче 42352
3) ΔАДС= ΔВЕС по стороне и прилежащей к ней двум углам.
1) ∠ С- общий
2) ∠ А= ∠ В по условию
3 АС=ВС по условию
✎ к задаче 42352