✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 37634 найти полный дифференциал

УСЛОВИЕ:

найти полный дифференциал z=cos^3(x^3y^2-1)

РЕШЕНИЕ ОТ sova ✪ ЛУЧШЕЕ РЕШЕНИЕ

dz=z`_(x)dx+z`_(y)dy

[b]z`_(x)[/b]=(cos^3(x^3y^2-1))`_(x)=

(u^3)`=3u^2*u`

=3cos^2(x^3y^2-1)*(cos(x^3y^2-1))`_(x)=

(cosu)`=(-sinu)*(u`)

=3cos^2(x^3y^2-1)*(sin(x^3y^2-1))*(x^3y^2-1)`_(x)=

= [b]3cos^2(x^3y^2-1)*(sin(x^3y^2-1))*(3x^2y^2)[/b]


[b]z`_(y)[/b]=(cos^3(x^3y^2-1))`_(y)=

(u^3)`=3u^2*u`

=3cos^2(x^3y^2-1)*(cos(x^3y^2-1))`_(y)=

(cosu)`=(-sinu)*(u`)

=3cos^2(x^3y^2-1)*(sin(x^3y^2-1))*(x^3y^2-1)`_(y)=

= [b]3cos^2(x^3y^2-1)*(sin(x^3y^2-1))*(2x^3y)[/b]



dz=3cos^2(x^3y^2-1)*(sin(x^3y^2-1))* ( 3x^2y^2 dx+ 2x^3ydy)

Вопрос к решению?
Нашли ошибку?

Добавил vk114725585, просмотры: ☺ 148 ⌚ 2019-05-27 15:46:30. математика 1k класс

Решения пользователей

Лучший ответ к заданию выводится как основной
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
1.5.1
vector{a}*vector{b}=|vector{a}|*|vector{b}|* cos( ∠ vector{a},vector{b})

В условии задачи[red] опечатка[/red], не соs φ_(1) дан, а ∠ φ _(1)=45 °

[b]∠ φ _(1)=45 °⇒ cos 45 ° = sqrt(2)/2[/b]

vector{a}*vector{b}=|vector{a}|*|vector{b}|* cos( 45 ° )=2*sqrt(2)*(sqrt(2)/2)=2

[b]∠ φ _(2)=90 ° ⇒ cos 90 ° =0[/b]

vector{a}*vector{b}=|vector{a}|*|vector{b}|* cos( 90 ° )=2*sqrt(2)*0=0

[b]∠ φ _(3)=135 ° ⇒ cos 135 ° = - sqrt(2)/2 [/b]

vector{a}*vector{b}=|vector{a}|*|vector{b}|* cos(135 ° )=2*sqrt(2)*(-sqrt(2)/2)= - 2

[b]∠ φ _(2)=180 ° ⇒ cos 180 ° =-1[/b]

vector{a}*vector{b}=|vector{a}|*|vector{b}|* cos( 180 ° )=2*sqrt(2)*(-1)= - 2sqrt(2)

1.5.2.
условие неполное.
Ничего не сказано про векторы

1.5.3.

(прикреплено изображение)
✎ к задаче 41493
Закон изменения импульса в проекции на ось х:
P_(2x)-P_(1x)=F_(x)*τ
mV_(1)cosα-mV_(2)cosβ=-F_(тр)*т ⇒
F_(тр)=(-mV_(1)cosα+mV_(2)cosβ)/т
✎ к задаче 41492
Разложение ln(1+x) известно. (прикреплено изображение)
✎ к задаче 41506
x=Vo*cosα*t
y=Vo*sinα*t-gt^2/2
r=sqrt(x^2+y^2)
✎ к задаче 41502
(прикреплено изображение)
✎ к задаче 41505