[b]z`_(x)[/b]=(cos^3(x^3y^2-1))`_(x)=
(u^3)`=3u^2*u`
=3cos^2(x^3y^2-1)*(cos(x^3y^2-1))`_(x)=
(cosu)`=(-sinu)*(u`)
=3cos^2(x^3y^2-1)*(sin(x^3y^2-1))*(x^3y^2-1)`_(x)=
= [b]3cos^2(x^3y^2-1)*(sin(x^3y^2-1))*(3x^2y^2)[/b]
[b]z`_(y)[/b]=(cos^3(x^3y^2-1))`_(y)=
(u^3)`=3u^2*u`
=3cos^2(x^3y^2-1)*(cos(x^3y^2-1))`_(y)=
(cosu)`=(-sinu)*(u`)
=3cos^2(x^3y^2-1)*(sin(x^3y^2-1))*(x^3y^2-1)`_(y)=
= [b]3cos^2(x^3y^2-1)*(sin(x^3y^2-1))*(2x^3y)[/b]
dz=3cos^2(x^3y^2-1)*(sin(x^3y^2-1))* ( 3x^2y^2 dx+ 2x^3ydy)