x=t6
dx=6t5dt
√x=t3
∛x=t2
= ∫ 6t5dt/(t3+t2)=6· ∫ t3dt/(t+1)=6· ∫ (t3–1+1)dt/(t+1)=
=6· ∫ (t3–1)dt/(t+1)+ 6· ∫ dt/(t+1)=
=6· ∫(t2+t+1)dt + 6· ∫ dt/(t+1)=
=6·(t3/3)+6·(t2/2)+6t + 6ln|t+1|+C=
=2t3+3t2+6t+6ln|t+1)+C, t=x1/6
О т в е т. 2√x+3∛x+6x1/6+6ln|x1/6+1|+C