(x+1)/(x·(x2+2x+2))= (A/x)+(Mx+N)/(x2+2x+2)
x+1= A·(x2+2x+2)+(Mx+N)·x
0=A+M
1=2A+N
1=2A
A=1/2
M=–1/2
N=0
= (1/2)∫ dx/(x+1) – (1/2) ∫ xdx/(x2+2x+2)=
=(1/2)ln|x+1| – (1/4) ∫( 2x+2–2)dx/(x2+2x+2)=
=(1/2)ln|x+1| – (1/4)ln|x2+2x+2| +(1/2) ∫ dx/((x+1)2+1)=
= (1/2)ln|x+1| – (1/4)ln|x2+2x+2| +(1/2) arctgx + C