x+2y=13
2log4x – log4(2y–1)=0.5
2log4x=log4x2
Тогда
log4x2–log4(2y–1)=0,5·1
Так как 1=log44
log4x2–log4(2y–1)=0,5·log44
log4x2–log4(2y–1)=log440,5
log4x2=log4(2y–1)+log42
log4x2=log42·(2y–1)
x2=2·(2y–1)
Система принимает вид:
{x+2y=13 ⇒ x= 13–2y
{x2=2·(2y–1)
(13–2y)2=2·(2y–1)
169–52y+4y2=4y–2
4y2–56y+171=0
D=562–4·4·171=3136–2736=400
y1=(56–20)/8=26/8=13/4; y2=(56+20)/8=76/8=38/4
x1=13/2 x2=–6 не удовлетворяет условию log4(–6) не сущ.
О т в е т. (13/2; 13/4)