✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 37122 Вариант 4.
Во время тренировки вратарь

УСЛОВИЕ:

Вариант 4.
Во время тренировки вратарь поймал мяч 25 раз из 30 бросков по воротам. Определите частоту удачных действий вратаря.

Среди 450 елочных игрушек 60 оказались бракованными. На вероятностной шкале отметьте вероятность появления бракованной игрушки.

см. картинку

Добавил vk263352860, просмотры: ☺ 83 ⌚ 2019-05-16 15:37:07. математика 6-7 класс

Решения пользователей

РЕШЕНИЕ ОТ sova

1.
25/30=5/6

2.
60/450=2/15

3.
600*0,03=18

4.
450-18=432 прибора небракованных

n=450

m=432

p=m/n=432/450=24/25=0,96

5.
n=200

"менее четырех"- значит, 1 или 2 или 3

m=22+17+21=60

p=m/n=60/200= [b]3/10[/b]

6.
Если числа больше 10-ти, то их произведение больше 100.
Это невозможное событие.
Его вероятность равна 0

7.

В году 12 месяцев.
Игроков 25
Согласно принципа Дирихле найдутся хотя бы три ребенка, которые родились в одном месяце.

Это невозможное событие. Его вероятность равна 0

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
[youtube=https://youtu.be/kWTppjruEmE]
✎ к задаче 39694
(прикреплено изображение)
✎ к задаче 39720
(прикреплено изображение)
✎ к задаче 39722
(прикреплено изображение)
✎ к задаче 39721
По определению.
a) область определения функции симметрична относительно точки О;
б)
и f(-x)=f(x) для любого х из области определения, тогда функция чЁтная

f(-x)= - f(x) для любого х из области определения, тогда функция нечЁтная

7.11
1)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= 19*(-x)^2=19x^2

f(-x) =f(x)
[b]Функция является чЁтной [/b]

2)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= (-x)^2 - 34=x^2 - 34

f(-x) =f(x)
[b]Функция является чЁтной [/b]

3)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= (-x)^4-7*(-x)^2=x^4-7x^2

f(-x) =f(x)
[b]Функция является чЁтной [/b]

4)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= (-x)^2- (-x)^4=x^2-x^4

f(-x) =f(x)
[b]Функция является чЁтной [/b]

5)

а) область определения функции (- ∞ ;0) U(0; + ∞ ) - симметрична относительно точки О;
б) f(-x)= \frac{10}{(-x)^{2}}= \frac{10}{x^{2}}

f(-x) = f(x)
[b]Функция является чЁтной [/b]

6)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= - \frac{8}{3+(-x)^{2}}= -\frac{8}{3+x^{2}}

f(-x) = f(x)
[b]Функция является чЁтной [/b]


7.14
1)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= 23*(-x)=-23x

f(-x) = - f(x)
[b]Функция является нечЁтной [/b]

2)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= 5*(-x)^3= - 5x^3

f(-x) = - f(x)
[b]Функция является нечЁтной [/b]


3)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= - 9*(-x)^3 = 9x^3

f(-x) = - f(x)
[b]Функция является нечЁтной [/b]


3)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= 23*(-x)=-23x

f(-x) = - f(x)
[b]Функция является нечЁтной [/b]


4)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= -(-x)^3 + 2*(-x)=x^3-2*x=-(-x^3+2*x)
f(-x) = - f(x)
[b]Функция является нечЁтной[/b]

5)

а) область определения функции (- ∞ ;0) U (0;+ ∞ ) - симметрична относительно точки О;

б) f(-x)= \frac{7}{-x}+(-x)= -\frac{7}{x}-x=-(\frac{7}{x}+x)

f(-x) = - f(x)
[b]Функция является нечЁтной[/b]

6)

а)
а) область определения функции (- ∞ ;0) U (0;+ ∞ ) - симметрична относительно точки О;

б) f(-x)= -\frac{16}{-x}-(-x)= \frac{16}{x}+x=-(-\frac{16}{x}-x)

f(-x) = - f(x)
[b]Функция является нечЁтной[/b]
✎ к задаче 39719