z = x2 + y2
y = x2
y=1
z=0
x2 ≤ y ≤ 1
см. рис.
V= ∫ ∫ D (x2+y2)dxdy=
= ∫ 1–1dx ∫ 1x2 (x2+y2)dy=
= ∫ 1–1 (x2y+(y3/3))| 1x2 dx=
= ∫ 1–1 (x2+(1/3)– x4–(x6/3)) dx=((x3/3)+(1/3)x–(x5/5)–(x7/21))| 1–1 =
=(1/3)+(1/3)–(1/5)–(1/21)–((–1/3)–(1/3)+(1/5)+(1/21)=
= 88/105